Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mechanismus für die Entstehung von Blutzellen endgültig entschlüsselt

01.04.2009
Ein Wissenschaftlerteam um Dr. Timm Schroeder vom Helmholtz Zentrum München hat die Existenz eines Blut bildenden Endothels bewiesen. Damit wird die bislang ungeklärte Frage beantwortet, wie in der Embryonalentwicklung Blutzellen entstehen. Blutzellen können so in Zukunft im Labor zielgerichteter erzeugt werden. Damit leisten die jüngsten Erkenntnisse einen wichtigen Beitrag für zukünftige klinische Therapieansätze.

Die Untersuchung wurde im renommierten Wissenschaftsmagazin Nature publiziert und wird ein zentrales Thema auf dem von 2. bis 4. April in München stattfindenden internationalen Fachkongress über molekulare Mechanismen der Blutbildung sein.

Vom 2. bis 4. April werden auf dem internationalen Kongress "Molecular Mechanisms of Normal and Malignant Hematopoiesis" in München molekulare Mechanismen der Blutbildung (Hämatopoese) präsentiert. Eine Frage, die Wissenschaftler seit Jahrzehnten beschäftigte, konnte nun gelöst werden: Wie entstehen genau die ersten Blutzellen im Embryo? Dr. Timm Schroeder, Arbeitsgruppenleiter am Institut für Stammzellforschung des Helmholtz Zentrums München, fand zusammen mit seinen Kollegen heraus, dass es eine besondere Art von Endothelzellen gibt, die sich in Blutzellen verwandeln können. Endothelzellen kleiden Blutgefäße von innen aus.

Dr. Timm Schroeder erläutert: "Der Prozess, bei dem Blutzellen entstehen, ist äußerst schwierig zu untersuchen: Er findet nur für kurze Zeit und im Verborgenen während der Embryonalentwicklung im Mutterleib statt."

Zunächst mussten die Wissenschaftler die technischen Voraussetzungen schaffen, um über einen längeren Zeitraum die Verwandlung von Endothel- in Blutzellen kontinuierlich auf Einzelzellebene beobachten zu können. Schroeder und seine Kollegen entwickelten dazu neue Bioimaging-Verfahren, mit denen das Verhalten vieler einzelner Zellen aufgenommen und beobachtet werden kann. Sie kombinierten dafür optimierte Mikroskopie-, Inkubations- und Bildaufnahmeverfahren sowie neu entwickelte Computerprogramme zur Einzelzellverfolgung in Zeitrafferfilmen mit komplexen Methoden der Zellreinigung und Zellkultur. So konnten die Wissenschaftler das Verhalten vieler differenzierender, mesodermaler Zellen über einen Zeitraum von bis zu einer Woche beobachten.

Durch sorgfältige Analyse tausender Zellen und deren exprimierter Moleküle konnten Dr. Timm Schroeder und die Doktorandin Hanna Eilken einige seltene Endothelzellen finden, die sich in der Tat in Blutzellen verwandelten.

"Im nächsten Schritt werden wir uns auf die Identifikation von Molekülen konzentrieren, die für die Spezifikation von Blutzellen verantwortlich sind", beschreibt Schroeder. "Letztlich wollen wir die genauen molekularen Mechanismen verstehen. Die Identifikation des exakten Zelltyps, der Blutzellen hervorbringt, ist eine wichtige Voraussetzung, um zu verstehen, welche Kombination von Molekülen eine Zelle zu einer Blutzelle macht."

Neben dem verbesserten Verständnis über die Mechanismen der Blutbildung sind die Ergebnisse der nun veröffentlichten Studie wichtig, um die Herstellung von Blutzellen im Labor für klinische Therapien zu verbessern. Eine mögliche in vitro-Produktion unbegrenzter Mengen an Blutzellen aus embryonalen Stammzellen gilt als viel versprechende Option für neue therapeutische Ansätze. Allerdings müssen für die zielgerichtete, effiziente und reine Herstellung spezifischer Blutzellen, die auch gefahrlos eingesetzt werden können, die notwendigen Differenzierungsschritte genau verstanden werden. Schroeder: "Unsere Studie hat nun den letzten dieser Schritte geklärt."

Das Institut für Stammzellforschung am Helmholtz Zentrum München vereint unter Leitung von Prof. Magdalena Götz die Forschung an Stammzellen des Nervensystems, des blutbildenden Systems und des Endoderms. Insbesondere in Hinblick auf klinische Anwendungen ist es das Ziel des Instituts, die grundlegenden Mechanismen der Spezifizierung von Stammzellen zu klären, um diese gezielt zur Reparatur geschädigter Zellen einsetzen zu können.

Weitere Informationen: http://www.helmholtz-muenchen.de/isf/haematopoese/index.html

Das Helmholtz Zentrum München ist das deutsche Forschungszentrum für Gesundheit und Umwelt. Als führendes Zentrum mit der Ausrichtung auf Environmental Health erforscht es chronische und komplexe Krankheiten, die aus dem Zusammenwirken von Umweltfaktoren und individueller genetischer Disposition entstehen. Das Helmholtz Zentrum München beschäftigt rund 1680 Mitarbeiterinnen und Mitarbeiter. Der Hauptsitz des Zentrums liegt in Neuherberg im Norden Münchens auf einem 50 Hektar großen Forschungscampus. Das Helmholtz Zentrum München gehört der größten deutschen Wissenschaftsorganisation, der Helmholtz-Gemeinschaft an, in der sich 15 naturwissenschaftlich-technische und medizinisch-biologische Forschungszentren mit insgesamt 26500 Beschäftigten zusammengeschlossen haben.

Originalpublikation: Eilken HM, Nishikawa SI and Schroeder T (2009):
Continuous single-cell imaging of blood generation from haemogenic endothelium
Nature, 457: 896 - 900
Symposium 2.-4. April 2009
Klinikum der Universität München, Campus Großhadern
Molecular Mechanisms of Normal and Malignant Hematopoiesis http://sfb684.klinikum.uni-muenchen.de/Symposium2009.htm
Youtube "Geburt" von Blutzellen
http://www.youtube.com/watch?v=qoBf7NfgpuE
Informationen für Medienvertreter:
Sven Winkler
Leiter Abteilung Kommunikation
Helmholtz Zentrum München
Tel.: 089-3187-3946
E-Mail: presse@helmholtz-muenchen.de

Michael van den Heuvel | Helmholtz-Zentrum
Weitere Informationen:
http://www.helmholtz-muenchen.de

Weitere Nachrichten aus der Kategorie Veranstaltungsnachrichten:

nachricht Von festen Körpern und Philosophen
23.02.2018 | Deutsche Physikalische Gesellschaft (DPG)

nachricht Spannungsfeld Elektromobilität
23.02.2018 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Veranstaltungsnachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics