Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kristalle helfen bei der Suche nach Antimaterie

05.09.2011
Internationale Tagung SCINT an der Universität Gießen beschäftigt sich mit neuen Szintillatormaterialien und ihrem vielseitigen Einsatz als Detektoren – Öffentlicher Vortrag zu szintillierenden Kristallen am 12. September 2011 – Pressegespräch am 13. September 2011

Mit der Charakterisierung neuer Szintillatormaterialien und deren vielseitiger Anwendung in Forschung und Industrie beschäftigt sich die internationale Tagung SCINT, die vom 12. bis 16. September 2011 an der Justus-Liebig-Universität Gießen (JLU) und damit zum ersten Mal in Deutschland stattfindet.

Szintillation (auch Phosphoreszenz oder Fluoreszenz genannt) ist die Eigenschaft von besonderen Materialien, auf die Absorption energiereicher Strahlung mit dem Aussenden von meist sichtbarem Licht zu reagieren. Da die Menge des ausgesandten Lichts ein Maß für die vorher absorbierte Energie darstellt, kann dies als Messprinzip für eine Vielzahl von Detektoren zum direkten Nachweis hochenergetischer Strahlung und Teilchen genutzt werden.

Szintillatormaterialien sind meist Kristalle, die künstlich hergestellt werden und deren Licht mit modernsten Sensoren in elektrische Signale umgewandelt wird. Szintillationsdetektoren wurden anfangs vor allem in der Kern- und Hochenergiephysik genutzt. Sie sind zentraler Bestandteil eines Detektors an der Weltmaschine Large Hadron Collider (LHC) am CERN und werden bei der Suche nach Antimaterie auf der internationalen Raumstation ISS eingesetzt. Die Vielseitigkeit der Szintillatoren hat die medizinische Diagnostik durch Computer- und Positronen-Emissions-Tomographie vor allem im Bereich der Krebserkennung und -therapie revolutioniert. Nachweise radioaktiver Umweltbelastung aber auch Sicherheitstechnologien an Flughäfen basieren auf Szintillationsdetektoren.

Zu der Tagung werden rund 350 Teilnehmer aus etwa 30 Ländern erwartet. Sie wird organisiert von den Mitarbeitern des II. Physikalischen Institut der JLU, die über langjährige Erfahrung mit Szintillationsdetektoren verfügen. Die vielfältigen Einsatzgebiete der Szintillatormaterialien stellen Prof. Dr. Volker Metag, Dr. Rainer Novotny (beide II. Physikalisches Institut der JLU), Prof. Paul Lecoq und Dr. Hartmut Hillemanns (beide CERN, Genf) vor in einem Pressegespräch am Dienstag, 13. September, um 12.15 Uhr im Hörsaalgebäude der Physik (Treffpunkt: Tagungsbüro im Foyer), Heinrich-Buff-Ring 14, 35392 Gießen.

In einem öffentlichen Vortrag am Montag, 12. September 2011, wird Dr. Hartmut Hillemanns vom CERN in Genf das Thema der Tagung allgemeinverständlich darstellen. „Es werde Licht: szintillierende Kristalle in Forschung, Medizin und Technik“ lautet der Titel seines Vortrags, der um 19.30 Uhr im Mathematikum Gießen (Liebigstraße 8) beginnt. Der Eintritt ist frei.

Termine:
Tagung SCINT: Montag, 12. September 2011, bis Freitag, 16. September 2011
Auftakt: Montag, 12. September 2011, 8.45 Uhr
Ort: Heinrich-Buff-Ring 14 (Hörsaal I), 35392 Gießen
Öffentlicher Vortrag: Montag, 12. September 2011, 19.30 Uhr
Dr. Hartmut Hillemanns, CERN (Genf): „Es werde Licht: szintillierende Kristalle in Forschung, Medizin und Technik“

Ort: Mathematikum Gießen, Liebigstraße 8, 35390 Gießen

Pressegespräch: Dienstag, 13. September 2011, 12.15 Uhr
Ort: Hörsaalgebäude der Physik (Treffpunkt: Tagungsbüro im Foyer), Heinrich-Buff-Ring 14, 35392 Gießen
Kontakt:
Dr. Rainer W. Novotny
II. Physikalisches Institut
Heinrich-Buff-Ring 16, 35392 Gießen
Telefon: 0641 99-33277

Caroline Link | idw
Weitere Informationen:
http://www.scint2011.org/

Weitere Nachrichten aus der Kategorie Veranstaltungsnachrichten:

nachricht Internationaler Ferienkurs mit rund 600 Teilnehmern aus aller Welt
28.07.2017 | Universität Heidelberg

nachricht 10. Uelzener Forum: Demografischer Wandel und Digitalisierung
26.07.2017 | Ostfalia Hochschule für angewandte Wissenschaften

Alle Nachrichten aus der Kategorie: Veranstaltungsnachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ruckartige Bewegung schärft Röntgenpulse

Spektral breite Röntgenpulse lassen sich rein mechanisch „zuspitzen“. Das klingt überraschend, aber ein Team aus theoretischen und Experimentalphysikern hat dafür eine Methode entwickelt und realisiert. Sie verwendet präzise mit den Pulsen synchronisierte schnelle Bewegungen einer mit dem Röntgenlicht wechselwirkenden Probe. Dadurch gelingt es, Photonen innerhalb des Röntgenpulses so zu verschieben, dass sich diese im gewünschten Bereich konzentrieren.

Wie macht man aus einem flachen Hügel einen steilen und hohen Berg? Man gräbt an den Seiten Material ab und schüttet es oben auf. So etwa kann man sich die...

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physiker designen ultrascharfe Pulse

Quantenphysiker um Oriol Romero-Isart haben einen einfachen Aufbau entworfen, mit dem theoretisch beliebig stark fokussierte elektromagnetische Felder erzeugt werden können. Anwendung finden könnte das neue Verfahren zum Beispiel in der Mikroskopie oder für besonders empfindliche Sensoren.

Mikrowellen, Wärmestrahlung, Licht und Röntgenstrahlung sind Beispiele für elektromagnetische Wellen. Für viele Anwendungen ist es notwendig, diese Strahlung...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Ferienkurs mit rund 600 Teilnehmern aus aller Welt

28.07.2017 | Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Firmen räumen bei der IT, Mobilgeräten und Firmen-Hardware am liebsten in der Urlaubsphase auf

28.07.2017 | Unternehmensmeldung

Dunkel war’s, der Mond schien helle: Nachthimmel oft heller als gedacht

28.07.2017 | Geowissenschaften

8,2 Millionen Euro für den Kampf gegen Leukämie

28.07.2017 | Förderungen Preise