Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elite der Europäischen Kristallzüchter trifft sich in Berlin

15.04.2010
Die Krisatllzüchtung ist extrem wichtig für den technologischen Fortschritt in der Optik-, Elektronik- und Solarbranche, insbesondere auch unter dem Aspekt der Energieeinsparung bei Herstellung und Verwendung von elektronischen Bauteilen. Europäische Krisatllzüchter beraten, wie ihre interdisziplinäre Forschungsrichtung besser in europäische Förderprogramme und die akademische Ausbildung eingebunden werden kann.

Die Züchtung von Kristallen ist eine Wissenschaftsrichtung, von deren Innovationen die Zukunft der Branchen Mikro- und Optoelektronik, Nano- und Kommunikationstechnologie, Photovoltaik und sogar der Biotechnologie in entscheidendem Maße abhängt.

Die Kristallzüchtung steht bei diesen Technologien am Anfang der Wertschöpfungskette und wird dadurch in der Öffentlichkeit kaum wahrgenommen. Auf Grund ihres interdisziplinären Charakters findet die Kristallzüchtung auch bei Förderprogrammen und in der akademischen Ausbildung nicht ausreichend Berücksichtigung. Europäische Kristallzüchter wollen dies ändern und treffen sich dazu vom 20. bis 21. April in Berlin-Adlershof.

Während der Veranstaltung stehen unter anderem folgende führende internationale Kristallzüchter als Interviewpartner zur Verfügung:

o Prof. Roberto Fornari, Deutschland, designierter Präsident der International Organisation of Crystal Growth (IOCG) und Direktor des Leibniz-Instituts für Kristallzüchtung
o Dr. Vyacheslav Puzikov, Ukraine, Direktor eines großen Institutes für Kristalle mit bis zu 1000 Mitarbeitern
o Dr. Eivind Øvrelid, Norwegen, Stichwort: Solarsilizium
o Prof. Elias Vlieg, Mitglied des IOCG Exekutivkomitees, Niederlande: Stichwort: biologische Kristalle
o Prof. Andris Muiznieks, Lettland, Stichwort: Modellierung von Kristallzüchtungs-vorgängen
o Prof. K. Roberts, Mitglied des IOCG Exekutivkomitees, England, Stichwort: industrielle Massenkristallisation für die Nahrungsmittel- und pharmazeutische Industrie
o Dr. Michel Kenzelmann, Schweiz, Stichwort: Neue Materialien mit speziellen gekoppelten elektrischen und magnetischen Eigenschaften
o Prof. Thierry Duffar, Frankreich, Stichwort: Kristallzüchtungsexperimente unter verminderter Schwerkraft
o Frau Prof. Hanna Dabkovska, Leiterin der Komission "Crystal Growth" der International Union of Crystallography, Canada, Stichwort: Internationale Nachwuchsarbeit
o Prof. Peter Rudolph, Vorsitzender der Deutschen Gesellschaft für Kristallzüchtung und Kristallwachstum (DGKK) und Leibniz-Institut für Kristallzüchtung, Berlin

o u.a. aus Spanien, Schweden, Irland, Frankreich, Italien, Polen,....

Informationen zur Kristallzüchtung

In der Ungestörtheit von Gesteinshöhlen wachsen sie in tausenden und Millionen von Jahren zu ebenmäßigen Schönheiten heran: Kristalle wie Diamanten oder Rubine faszinierten die Menschen schon immer als Schmucksteine und Symbole für Reichtum und Wohlstand. Chemisch gesehen sind Kristalle die regelmäßigsten Strukturen, die die Natur kennt. In ihnen sind Atome oder auch Moleküle in immer gleichem Abstand und gleicher Reihenfolge angeordnet. Kristallzüchter versuchten schon Anfang des 19. Jahrhunderts die Natur nachzuahmen und künstliche Kristalle vor allem für Schmuck zu züchten.

Mit dem Beginn der Optik wurden die Eigenschaften von Kristallen zur Lichtbrechung genutzt, mit Einzug der Lasertechnik bildeten sie die Grundlage für Festkörperlaser. Halbleiterkristalle haben heute den Massenmarkt erobert, denn sie bilden die Basis jedes elektronischen Gerätes oder Bauteiles. Ohne Halbleiterkristalle gäbe es keine Computer, keine Leuchtdiode, keine modernen Autos, keinen Tintenstrahldrucker, kein medizinisches Ultraschalldiagnosegerät, keine Satellitenkommunikation, keine Solarzelle, keine Flüssigkristallbildschirme etc.

Natürliche Kristalle sind für diese Anwendungen zu selten und zu verunreinigt. Viele heute verwendete Kristalle wachsen in der Natur auch überhaupt nicht heran, Chemiker kreieren daher ihre Zusammensetzung und züchten sie in komplizierten Verfahren. Weil Kristalle in so vielen Anwendungen stecken, kommt ihrer Herstellung eine sehr hohe wirtschaftliche Bedeutung zu.

Die Herstellungskosten, der Energieverbrauch bei der Produktion und die Qualität der Kristalle werden durch die Züchtung maßgeblich bestimmt. Hier kommen die Kristallzüchter ins Spiel, die versuchen immer neue und verbesserte Züchtungsverfahren zu entwickeln. Ein Ziel ist es beispielsweise, größere Volumenkristalle zu erhalten. Denn die zumeist aus ihrem geschmolzenen Zustand gezogenen Kristalle sind in der Regel zylinderförmig, wodurch bei der Weiterverarbeitung umso weniger Abfall entsteht, je größer sie sind. Bei Silizium, dem wichtigsten Halbleitermaterial, sind die Kristallzüchter bereits in der Lage vergleichsweise riesige Kristalle mit einem Durchmesser von 40 Zentimetern, einer Länge von bis zu 2 Metern und einem Gewicht von bis zu 450 Kilogramm zu züchten. Andere weit kompliziertere Halbleiter und viele optische und Lasermaterialien bringen es dagegen nur auf Durchmesser einer CD und weniger. Um den Ausstoß zu erhöhen, ist man in der Scheibenfertigung für Solarzellen heute schon auf die Kristallisation rechteckiger aus Silizium-Blöcke mit Gewichten bis 500 und 1000 Kilogramm übergegangen.

Auch der Energieverbrauch bei der Herstellung spielt für die Kosten eine wichtige Rolle, denn wenn die Kristalle aus der Schmelze gezogen werden, liegen die Temperaturen oft weit über 1000 °C. Auch hier suchen die Forscher nach besseren Rezepten, zum Beispiel indem sie Kristalle aus dem Dampf oder Lösungen mit niedrigeren Temperaturen züchten.

Manche Halbleiter, wie beispielsweise Siliziumkarbid, Aluminiumnitrid und Galliumnitrid lassen sich überhaupt noch nicht mit vertretbarem Aufwand in voluminöser Form züchten, obwohl die Mikro- und Optoelektronikbranche sie für neue Anwendungen, beispielsweise in Elektroautos oder für die Massenproduktion von weißen Leuchtdioden dringend bräuchte - eine große Herausforderung für die Kristallzüchter. Der Durchbruch der Solarenergie beispielsweise hängt entscheidend davon ab, ob es den Kristallzüchtern gelingt, noch kostengünstigeres kristallines Solarsilizium mit hohem Wirkungsgrad oder neue noch effektivere Materialkombinationen herzustellen.

Im Gegensatz zu der immensen Bedeutung der Kristallzüchtung stehen ihre geringe Wahrnehmung in der Öffentlichkeit und die wenigen Fördermöglichkeiten, das soll sich ändern. Die führenden Kristallzüchter fast aller Europäischen Länder treffen sich deshalb vom 20. bis 21. April in Berlin-Adlershof. Sie wollen unter anderem erreichen, dass ihre interdisziplinäre Forschungsrichtung in EU-Förderprogramme aufgenommen wird und die akademische Ausbildung Eingang findet. Auch wollen sie ein kooperierendes europäisches Netzwerk gründen, das eines Tages in eine Europäische Gemeinschaft für Kristallzüchtung übergehen könnte.

Die Veranstaltung wird unterstützt und gesponsert von:
TSB Technologiestiftung Berlin,
DFKK Deutsche Gesellschaft für Kristallwachstum und Kristallzüchtung e.V.,
STEREMAT Elektrowärme GmbH,
AUTEAM Industrie-Elektronik GmbH,
CrysTec GmbH - Spezialist für Kristallbearbeitung
Kontakt:
Prof. Peter Rudolph, Leibniz-Institut für Kristallzüchtung, Tel.: 030 -6392 3034
pr@ikz-berlin.de; Dr. Wolfram Miller, Leibniz-Institut für Kristallzüchtung, Tel.: 030 -6392 3074 3078, wm@ikz-berlin.de

Christine Vollgraf | idw
Weitere Informationen:
http://www.fv-berlin.de

Weitere Nachrichten aus der Kategorie Veranstaltungsnachrichten:

nachricht Firmen- und Forschungsnetzwerk Munitect tagt am IOW
08.12.2016 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht NRW Nano-Konferenz in Münster
07.12.2016 | Ministerium für Innovation, Wissenschaft und Forschung NRW

Alle Nachrichten aus der Kategorie: Veranstaltungsnachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einzelne Proteine bei der Arbeit beobachten

08.12.2016 | Biowissenschaften Chemie

Intelligente Filter für innovative Leichtbaukonstruktionen

08.12.2016 | Messenachrichten

Seminar: Ströme und Spannungen bedarfsgerecht schalten!

08.12.2016 | Seminare Workshops