Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Klimawandel und Folgen für die Ozonschicht

11.09.2007
20 Jahre Montrealer Protokoll zum Schutz der Ozonschicht / Tagung im Rahmen des Welt-Klimaforschungsprogramms vom 17. -21. September an der Universität Bremen

Am 16. September 2007 jährt sich zum 20. Mal die Verabschiedung des "Montrealer Protokolls" zum Schutz der Ozonschicht.

Die Vereinbarung ist ein außergewöhnlich positives Beispiel dafür, dass die internationale Staatengemeinschaft wirksam auf globale Umweltprobleme reagiert. Die Konzentration von Ozon abbauender Substanzen in der Atmosphäre nimmt seit Mitte der 90-er Jahre ab. Bremer Umweltphysiker haben sich seit der Entdeckung der "Ozonlöcher" an internationalen Forschungsprojekten beteiligt, um die Vorgänge des Ozonabbaus über den Polen wissenschaftlich zu verstehen.

Vom 17. - 21. September 2007 findet auf Einladung von Professor John Burrows im Institut für Umweltphysik (IUP) der Universität Bremen die Tagung des wissenschaftlichen Lenkungsausschusses des internationalen Forschungsprogramms "Stratospheric Processes and their Role in Climate (SPARC)" statt, einem Unterprogramm des Welt-Klimaforschungsprogramms (World Climate Research Program, WRCP). Im Zusammenhang mit dieser Tagung wird es am 17. und 18. September auch einen wissenschaftlichen Workshop deutscher Ozonexperten in Bremen geben.

... mehr zu:
»Umweltphysik

Ein Schwerpunkt der SPARC-Veranstaltungen ist die Frage, wie sich die Ozonschicht in den nächsten Jahren und Jahrzehnten entwickeln wird und welchen Einfluss das sich ändernde Klima darauf hat. Eine wesentliche Unsicherheit bei der Prognose der weiteren Entwicklung der Ozonschicht betrifft das Wechselspiel von Ozonschicht und Klimaänderungen aufgrund der Zunahme von Treibhausgasen wie CO2 in der Atmosphäre. Während die Zunahme von Treibhausgasen zu einer globalen Erwärmung am Erdboden führt, bewirkt sie in den großen Höhen der Ozonschicht eine Abkühlung mit entsprechenden Auswirkungen auf die Ozonchemie. Modellrechnungen zeigen, dass sich durch die Klimaänderungen auch die atmosphärische Zirkulation verändern kann. Dadurch ist dann ebenfalls eine Beeinflussung der Ozonschicht möglich.

Zum Montrealer Protokoll

In diesem internationalen Abkommens von 1987 verpflichten sich die Vertragsparteien zu einer stufenweisen Reduzierung der Produktion derjenigen chemischen Verbindungen, die wesentlich zum Abbau der Ozonschicht beitragen - eine aus politischer Sicht schnelle Reaktion. Denn erst zwei Jahre vorher gab es erste Hinweise, dass es über der Antarktis zu einem dramatischen Ozonrückgang und der Entstehung eines "Ozonlochs" gekommen war. Schon bald konnte man nachweisen, dass für die Entstehung des Ozonlochs die Emission von Fluorchlorkohlenwasserstoffen (FCKW) und einiger anderer Halogenverbindungen, die zum Beispiel als Treibmittel in Sprühdosen verwendet wurden, verantwortlich ist. Um dem durch die Halogenverbindungen verursachten Ozonabbau Einhalt zu gebieten, kam es am 16. September 1987 zur Verabschiedung des "Montrealer Protokolls über Stoffe, die zu einem Abbau der Ozonschicht führen" - das mit Ergänzungen mittlerweile von über 190 Staaten ratifiziert wurde. Die Auswirkungen des Montrealer Protokolls sind bereits messbar: Die atmosphärischen Konzentrationen einiger geregelter Substanzen nehmen seit Mitte der 90-er Jahre in der unteren Atmosphäre ab. Als Folge davon erwartet man eine langsame Erholung der Ozonschicht. Vor diesem Hintergrund ist das Montrealer Protokoll als ein großer Erfolg zu sehen.

Beobachtung der Ozonschicht mit Bremer Know-how

Bereits im Jahre 1973 entdeckten die Wissenschaftler Sherwood Rowland und Mario Molina, dass eine Reihe in großem Umfang industriell hergestellter Chlorverbindungen (FCKW oder Fluorchlorkohlenwasserstoffe) in der Lage sind, die stratosphärische Ozonschicht empfindlich zu schädigen. Für diese Entdeckung erhielten sie im Jahr 1995 den Nobelpreis für Chemie. FCKWs wurden beispielsweise als Kühlmittel in Kühlschränken und Klimaanlagen oder als Treibmittel in Sprühdosen verwendet und galten aufgrund ihrer Reaktionsträgheit als ungefährliche Substanzen, die bedenkenlos in die Atmosphäre entweichen konnten. Aufgrund der Ergebnisse von Rowland und Molina erwartete man durch den Anstieg der FCKW-Konzentration in der Atmosphäre eine langsame Abnahme der Ozonschichtdicke. Die Entdeckung des Antarktischen Ozonloch kam dann aber völlig überraschend: Niemand hatte vorher damit gerechnet, dass es ausgerechnet über der fernab der Zivilisation gelegenen Antarktis zu einer so massiven Schädigung der Ozonschicht kommen würde. Nachdem unmittelbar nach der Entdeckung des Ozonlochs verschiedene wissenschaftliche Erklärungsansätze miteinander konkurrierten, konnten im südhemisphärischen Frühling des Jahres 1987 durch Flugzeugmessungen über der Antarktis erhöhte Chlorkonzentrationen als Ursache der Ozonvernichtung durch Flugzeugmessungen über der Antarktis identifiziert werden. Mittlerweile sind die physikalischen und chemischen Prozesse, die zur massiven Ozonvernichtung innerhalb des Ozonlochs führen, gut verstanden. Von zentraler Bedeutung sind dabei besonders tiefe Temperaturen, wie sie im Winter über der Antarktis in der Ozonschicht auftreten. Bei diesen tiefen Temperaturen können sich in 15 bis 20 km Höhe polare Stratosphärenwolken bilden, auf denen chemische Reaktionen ablaufen, die eher unreaktive Chlorverbindungen in sehr reaktive Substanzen umwandeln.

Auch in der Nordhemisphäre über der Arktis wurde in einzelnen kalten Wintern ein massiver Ozonabbau ähnlich wie im antarktischen Ozonloch beobachtet. Wissenschaftler des Instituts für Umweltphysik an der Universität Bremen haben dabei in den vergangenen Jahren wesentlich zur Untersuchung des arktischen Ozonabbaus beigetragen. Seit 1995 liefern die beiden Satellitenexperimente GOME und SCIAMACHY, an deren Entwicklung und Betrieb das Institut für Umweltphysik unter Leitung von Professor John Burrows maßgeblich beteiligt ist, verlässliche globale Beobachtungen der Ozonschicht. Professor John Burrows ist Initiator und Principal Investigator des SCIAMACHY Instruments, das als deutsch-niederländisch-belgisches Gemeinschaftsprojekt Europas Beitrag zur langfristigen Überwachung der Ozonschicht ist.

Weitere Informationen:

Universität Bremen
Fachbereich Physik/Elektrotechnik
Institut für Umweltphysik:
Prof. Dr. John Burrows
Dr. Björn-Martin Sinnhuber
Tel. 0421 218 8958
E-Mail bms@iup.physik.uni-bremen.de
Weitere Informationen:
http://www.iup.uni-bremen.de
http://www.iup.uni-bremen.de/sciamachy/sparc
http://www.iup.uni-bremen.de/montreal_protocol_20y
http://www.atmosp.physics.utoronto.ca/SPARC
http://www.sciamachy.de

Eberhard Scholz | idw
Weitere Informationen:
http://www.iup.uni-bremen.de

Weitere Berichte zu: Umweltphysik

Weitere Nachrichten aus der Kategorie Veranstaltungsnachrichten:

nachricht European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal
18.08.2017 | Bergische Universität Wuppertal

nachricht Einblicke ins menschliche Denken
17.08.2017 | Universität Potsdam

Alle Nachrichten aus der Kategorie: Veranstaltungsnachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Wolkenmacher“: Wie Unternehmen Vertrauen aufbauen

18.08.2017 | Unternehmensmeldung

Beschichtung lässt Muscheln abrutschen

18.08.2017 | Materialwissenschaften

Fettleber produziert Eiweiße, die andere Organe schädigen können

18.08.2017 | Biowissenschaften Chemie