Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Werkzeuge für die Lichternte

26.03.2007
Internationale Tagung “Light-Harvesting Processes” im Kloster Banz
Biologen, Chemiker und Physiker suchen nach neuen Wegen, das Sonnenlicht einzufangen

Energieforschung. - In weniger als einer Stunde strahlt die Sonne mehr Energie auf die Oberfläche unseres Planeten, als die ganze Welt jährlich benötigt. Natürlich können wir nun einen Bruchteil davon tatsächlich nutzen. Zum Beispiel mit Hilfe von Solarzellen. Forscher auf der ganzen Welt versuchen im Moment, deren Effizienz zu erhöhen. Im Kloster Banz, in der Nähe von Bamberg, treffen sie sich zurzeit auf einer internationalen Konferenz.

Die Natur selbst hat die wirksamsten Materialien erschaffen, mit denen sich Licht sammeln lässt. Denn Pflanzen und manche Bakterien nutzen die Sonne, um Photosynthese zu betreiben. Also um Zucker herzustellen aus Wasser und Kohlendioxid. Das Licht fangen sie ein mit Hilfe von Farbstoffen, zum Beispiel mit dem grünen Chlorophyll. Wie eine Vielzahl kleiner Antennen hängen die Farbstoffmoleküle an einem komplexen Gerüst aus einer Eiweißverbindung. Professor Richard Cogdell von der Universität Glasgow untersucht diese hocheffizienten Lichterntemaschinen, um damit das Fundament für eine künstliche Photosynthese zu legen. Cogdell:

"Wir würden gerne verstehen, wie diese Maschinen im Detail arbeiten. Wir kennen bereits ihre Baupläne, viele verschiedene davon. Aber jetzt müssen wir herausfinden, wie sie funktionieren. Mit diesen grundlegenden Prinzipien können wir dann zu unseren Kollegen gehen, den Chemikern - zum Beispiel hier auf der Konferenz - die ihre Moleküle dann entsprechend aufbauen. Mit denen können dann andere Forscher Solartreibstoff herstellen."

... mehr zu:
»Photosynthese

Synthetisch müssen die Farbstoffe sein, weil die natürlichen Verbindungen oft nicht stabil genug sind. Besonders Sauerstoff macht ihnen zu schaffen. Im Laufe der Zeit bleichen sie aus. Doch während eine Pflanzenzelle einfach neuen Farbstoff nachliefern kann, geht das bei den künstlichen Systemen nicht. Frank Würthner ist Professor an der Universität Würzburg. Er arbeitet mit einer ganz speziellen Klasse von Farbstoffen, mit Pigmenten, die auch im Autolack vorkommen. Würthner:

"Die haben eine hohe Stabilität. Deswegen kann man sie in Autolacken einsetzen. Jeder möchte, dass sein Auto doch ein Jahrzehnt seine Farbe behält. Aber die Art, wie sie natürlich angeordnet sind im Autolack, die ist nicht geeignet, um die Funktion zu erreichen, die man für die Photosynthese braucht. Und daran müssen wir arbeiten, wie man die so anordnet, dass man neue Funktionen erzielt, nicht nur Farbigkeit."

Das funktioniert meistens über Selbstorganisation. Die Chemiker bringen an den Molekülen bestimmte Verknüpfungsstellen an, so dass die einzelnen Bausteine sich wie von selbst zu einer komplexen Architektur zusammenlagern. Und komplex müssen die Lichtsammelsysteme sein. Denn die Farbstoffe müssen nicht nur die Lichtenergie einfangen, sie müssen sie auch umwandeln in chemische Verbindungen. Das ist zumindest die eine Anwendung, welche die Forscher im Hinterkopf haben. Etwas weniger kompliziert und deshalb schon näher an der Praxis ist es, wenn die Wissenschaftler keine künstliche Photosynthese betreiben wollen, sondern mit den Farbstoffen einfach nur Licht für eine Solarzelle einfangen. Zu diesen Farbstoff-Zellen der ersten Stunde gehört die Grätzel-Zelle. Sie enthält das Mineral Titaniumdioxid, das mit einem Farbstoff veredelt wird. Ihr Nachteil: Sie arbeitet weniger wirtschaftlich als eine klassische Silizium-Zelle. Aber sie kostet auch weniger.

"Aber es gibt auch eine Reihe von Anwendungen, wo man zum Beispiel billigere Solarzellen braucht, und vielleicht im Bereich von 5 bis 10 Prozent Wirkungsgrad."

Professor Mukundan Thelakkat von der Universität Bayreuth. Er hat die Grätzel-Zelle weiterentwickelt, vor allem ihre Lebensdauer verlängert. Ein wichtiger Schritt, aber dennoch: Für praxistauglich Anlagen werden die Forscher noch einiges an Pionierarbeit leisten müssen. Bis zur ersten künstlichen Photosynthese werden wohl noch einige Jahre oder Jahrzehnte vergehen. Professor Jürgen Köhler, einer der Mitveranstalter aus Bayreuth:

"Sagen wir einmal: Ein künstliches Blatt oder ein Baum mit Steckdose, um mal so ein Schlagwort zu nehmen, da sind wir sicher noch sehr weit entfernt. Und da muss sicherlich noch sehr, sehr viel investiert werden. Und zwar nicht nur in angewandte Forschung, sondern auch in Grundlagenforschung. Wenn wir uns jetzt einmal auf Systeme beschränken, die zunächst mal einfacher sind, Grätzel-Zellen, organische Solarzellen, dann gibt es die ja schon. Also sind wir schon mittendrin in diesem Prozess, also es gibt schon Anwendungen."

Auf alle Fälle eine Gemeinschaftsaufgabe, die Biologen, Chemiker, Materialwissenschaftler und Physiker nur zusammen lösen können.

Kerstin Wodal | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Berichte zu: Photosynthese

Weitere Nachrichten aus der Kategorie Veranstaltungsnachrichten:

nachricht Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein
28.03.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle
28.03.2017 | Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS

Alle Nachrichten aus der Kategorie: Veranstaltungsnachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE