Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erkennen, wie Krankheiten entstehen - Zellbiologen aus dem In- und Ausland tagen in Berlin

24.03.2004


In den vergangenen drei, vier Jahren haben Zellbiologen durch die Entwicklung neuer Markierungsmethoden und bildgebender Verfahren immer tiefere Einblicke in die Abläufe von Zellteilung und Zellwachstum im lebenden Organismus bekommen. Jetzt können sie die Dynamik von Zellen - Zellwanderung, Bildung von Metastasen, Übermittlung von Signalen, Wechselwirkung von Signalen - im einzelnen beobachten, gleichgültig ob die Vorgänge Mikrosekunden dauern oder mehrere Tage, und auch die Funktion aller Moleküle in der Zelle untersuchen, auch der Kleinsten. Möglich machen das die neuen mikroskopischen Techniken mit dem natürlichen Grün-Fluoreszierenden-Protein (GFP) oder etwa mit dem Fluoreszenz-Resonanz-Energie-Transfer (FRET), der den Nachweis von Bindungen und Wechselwirkungen zwischen Proteinen, fettartigen Molekülen, DNA und RNA in lebenden Zellen erlaubt.



Solche neuen revolutionären Techniken, unter dem Begriff "Imaging" (Bildgebung) zusammengefasst, sind ein wichtiger Aspekt der Jahrestagung der Deutschen Gesellschaft für Zellbiologie (DGZ), die am 24. März im historischen Rathaus Schöneberg in Berlin begonnen hat. "Die Mikroskopie ist noch immer eine der zentralen Säulen der Zellbiologie", erläutert DGZ-Präsident Prof. Manfred Schliwa von der Ludwig-Maximilians-Universität München die Wahl eines der Schwerpunktthemen dieser internationalen Tagung, zu der 600 Wissenschaftlerinnen und Wissenschaftler aus Kanada, den USA und mehreren europäischen Ländern nach Berlin gekommen sind. "Insbesondere die fluoreszenzmikroskopischen Techniken und die Sichtbarmachung einzelner Moleküle haben ihr zu einem ungeahnten Aufschwung verholfen", betonte er vor der Presse. Das spiegelt sich auch in der Vergabe mehrerer Preise auf der Tagung wider.

... mehr zu:
»Zellbiologie »Zellteilung


Auszeichnungen für bahnbrechende Entdeckungen und Entwicklungen

So geht die höchste Auszeichnung der DGZ, die Carl-Zeiss-Lecture, in diesem Jahr an den Biochemiker und Pharmakologen Prof. Roger Y. Tsien (Howard Hughes Medical Institute, HHMI/ Universität von Kalifornien San Diego, La Jolla, USA). Prof. Tsien wird für seine bahnbrechenden Arbeiten zur Entwicklung und Anwendung fluoreszierender Farbstoffe ausgezeichnet, mit denen die Aktivitäten von Molekülen in der Zelle sichtbar gemacht und gemessen werden können. Darüber hinaus werden zwei weitere Preise für die Erforschung grundlegender Lebensvorgänge der Zelle und für die Entwicklung neuer Techniken vergeben. Es sind die Walther-Flemming-Medaille, die die DGZ zum ersten Mal vergibt, und der Binder-Innovationspreis. Die Medaille geht an Dr. Jan Ellenberg vom Europäischen Labor für Molekularbiologie (EMBL) in Heidelberg für seine bahnbrechenden Arbeiten über den Mechanismus des Beginns der Zellteilung. Dr. Cristina Cardoso vom Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch erhält den Innovationspreis für ihre Untersuchungen zur Verdopplung der Erbsubstanz DNA (DNA-Replikation) in lebenden Zellen und die Entwicklung einer Technik, mit der sie den Zellzyklus einer lebenden Zelle und seine Regulation direkt verfolgen kann.

"Bei allen 12 Symposien der Tagung wird deutlich, wie wichtig nach wie vor die Grundlagenforschung für ein Verständnis krankhafter Veränderungen des menschlichen Organismus ist", betonen Prof. Schliwa und die wissenschaftlichen Organisatoren der viertägigen Veranstaltung, Prof. Walter Birchmeier, Dr. Barbara Munz und Dr. Marta Rosário vom MDC. "Die Zelle ist nicht nur die Grundlage des Lebens. Zelluläre Defekte sind die Grundlage aller Erkrankungen des Menschen." In allen Lebewesen verfügen Zellen über bestimmte Kontrollmechanismen bei der Zellteilung. Wie entscheidend die korrekte Signalübertragung in Zellen ist, zeigt sich daran, dass 80 - 90 Prozent aller Proteine einer Zelle solche regulatorischen Aufgaben haben. Werden die Kontrollen außer Kraft gesetzt und versagen Reparaturmechanismen, kommt es zu dramatischen Fehlern bei der Zellteilung: die Zelle beginnt unkontrolliert zu wachsen und kann zur Krebszelle werden.

"Die Zellbiologie", so Prof. Birchmeier, "ist inzwischen für die Krebsforschung ebenso wichtig wie für die Immunologie, die Herz-Kreislaufforschung und die Entwicklungsbiologie." Er verwies auf die Erkenntnisse, die die Zellbiologie in den vergangenen Jahren dank der neuen Methoden erzielen konnte. Dazu gehören unter anderem die Aufklärung des Zusammenhalts von Zellen im Zellverband (Zelladhäsion), der bei der Entstehung von Metastasen aufgebrochen ist, die Übermittlung von Signalen von der Zelloberfläche bis in die Schaltzentrale der Zelle, den Zellkern, die Dynamik der DNA-Replikation, die jetzt in Berlin ausgezeichnet wird, oder die Dynamik des Zellskeletts, die bei Zellwanderungsvorgängen essentiell ist.

"Chance zur Korrektur"

"Nur aus dem Verständnis der Funktionen der zigtausend Bausteine einer Zelle erwächst auch eine Chance zur Korrektur fehlgeleiteter Prozesse", heben die Zellbiologen hervor. Auf dieser Grundlage sind in den vergangenen Jahren schon einige neuartige Medikamente, Antikörper oder Wachstumshemmer gegen bestimmte Krebserkrankungen entwickelt worden. Dazu zählt zum Beispiel der Antikörper Trastuzumab, der gezielt Bindungsstellen des Rezeptors HER2 (die Abkürzung steht für humaner epidermaler Rezeptor 2) für Wachstumsfaktoren besetzt. Der Rezeptor HER2 ist damit blockiert. Das Brustkrebswachstum verlangsamt sich. HER2 ist vor allem bei Brustkrebspatientinnen, die bereits Metastasen haben, vermehrt vorhanden. Zu dieser Rezeptorfamilie gehören auch andere Rezeptoren für Wachstumshormone, die in vielen Krebszellen, auch Brustkrebszellen, aktiv sind. Nach Ansicht von Dr. Nancy Hynes vom Friedrich Miescher Institut in Basel/Schweiz bieten sie sich ebenfalls als Zielstrukturen für therapeutische Ansätze an. Sie erforscht die Rolle von epidermalen Wachstumsfaktorrezeptoren für das Wanderungsverhalten von Krebszellen und hat einen neuen Signalweg entdeckt, der diesen Prozess stimuliert.

Mit Halbleiter-Nanokristallen (quantum dots) gelingt es Dr. Thomas Jovin vom Max-Planck-Institut für biophysikalische Chemie in Göttingen, die Übermittlung von Steuersignalen für die Gene einer Zelle im Film festzuhalten. Die quantum dots dienen ihm als winzige Marker, mit denen er einzelne Gene, Nukleinsäuren, Proteine oder auch kleine Moleküle sichtbar macht, und die es ihm erlauben, ihren Weg in der Zelle zu verfolgen. Solche quantum dot-Komplexe binden an ihr Zielmolekül und können - abhängig von ihrer Größe - in allen Farben und bis zu 1000fach heller leuchten als Fluoreszenzfarbstoffe. Von diesem methodischen Durchbruch erhofft sich die Wissenschaft, dass es künftig wesentlich schneller gelingt, Medikamente zum Beispiel gegen Krebs zu entwickeln, die gezielt in die Steuerung, bzw. Fehlsteuerung einer entarteten Zelle eingreifen.

Dr. Scott E. Fraser vom Beckman Institute des California Institute of Technology in Pasadena präsentiert eine Arbeit, die zeigt, dass Stammzellen, die Ratten nach einer Durchblutungsstörung (Ischämie) ins Gehirn transplantiert worden sind, vorwiegend in das geschädigte Gehirnareal einwandern. Die Zellen markiert er zuvor mit einem bestimmten Farbstoff (gadolinum rhodamine dextran, GRID), wodurch sie sowohl mit der Fluoreszenzmikroskopie als auch mit Magnet-Resonanz-Verfahren verfolgt werden können. Das Verfahren könnte nach Ansicht des Wissenschaftlers dazu beitragen, künftig Transplantationsstrategien zu verbessern.

Weitere Themen der Tagung sind die Analyse des Proteoms (Gesamtheit aller Proteine), die Frage, wie genetische Information zur Ausprägung von Merkmalen und so zur Entwicklung unterschiedlichster Organismen führt, Mechanismen der Signalübertragung in Zellen sowie die Stammzellforschung. Den Festvortrag "Was hemmt Europas Wissenschaft?" hält Prof. Dr. Gottfried Schatz, der international renommierte Wissenschaftler am Biozentrum Basel/Schweiz) und bis Ende 2003 Präsident des Schweizerischen Wissenschafts- und Technologierats (SWTR).

Presse- und Öffentlichkeitsarbeit
Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch
Robert-Rössle-Str 10
13125 Berlin
Barbara Bachtler
Tel: 030/94 06 - 38 96
Fax:030/94 06 - 38 33
e-mail:bachtler@mdc-berlin.de

Barbara Bachtler | MDC
Weitere Informationen:
http://www.mdc-berlin.de

Weitere Berichte zu: Zellbiologie Zellteilung

Weitere Nachrichten aus der Kategorie Veranstaltungsnachrichten:

nachricht Legionellen? Nein danke!
25.09.2017 | Haus der Technik e.V.

nachricht Posterblitz und neue Planeten
25.09.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Veranstaltungsnachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste lichtgetriebene Stromquelle der Welt

Die Stromregelung ist eine der wichtigsten Komponenten moderner Elektronik, denn über schnell angesteuerte Elektronenströme werden Daten und Signale übertragen. Die Ansprüche an die Schnelligkeit der Datenübertragung wachsen dabei beständig. In eine ganz neue Dimension der schnellen Stromregelung sind nun Wissenschaftler der Lehrstühle für Laserphysik und Angewandte Physik an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) vorgedrungen. Ihnen ist es gelungen, im „Wundermaterial“ Graphen Elektronenströme innerhalb von einer Femtosekunde in die gewünschte Richtung zu lenken – eine Femtosekunde entspricht dabei dem millionsten Teil einer milliardstel Sekunde.

Der Trick: die Elektronen werden von einer einzigen Schwingung eines Lichtpulses angetrieben. Damit können sie den Vorgang um mehr als das Tausendfache im...

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bakterielle Nano-Harpune funktioniert wie Power-Bohrer

26.09.2017 | Biowissenschaften Chemie

eTRANSAFE – ein Forschungsprojekt für mehr Sicherheit bei der Arzneimittelentwicklung

26.09.2017 | Biowissenschaften Chemie

Die schnellste lichtgetriebene Stromquelle der Welt

26.09.2017 | Physik Astronomie