Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

"Motor der deutschen Materialwissenschaft" in Stuttgart-Büsnau

27.05.2002


Zwei Max-Planck-Institute und drei Universitätsinstitute jetzt gemeinsam auf einem Campus / Insgesamt mehr als 1000 Mitarbeiter

Ein weltweit einzigartiges Zentrum für Materialwissenschaft ist jetzt in Stuttgart-Büsnau fertig gestellt worden: Am 27. Mai 2002 um 14.00 Uhr feiert das Max-Planck-Institut für Metallforschungin der Heisenbergstraße 1 in Stuttgart-Büsnau die Einweihung seines Neubaus. (Die Vertreter der Medien sind bereits am Vormittag um 10.30 Uhr in der Heisenbergstraße 3, Seminarraum 2 P 4, zu einer Pressekonferenz mit dem Geschäftsführenden Direktor des Max-Instituts für Metallforschung, Prof. Fritz Aldinger, eingeladen.)


Das neue Gebäude ist in knapp zwei Jahren als Erweiterung eines schon bestehenden Gebäudeteils des Max-Planck-Instituts für Metallforschung entstanden. Mit 6911 Quadratmetern Hauptnutzfläche und 14 362 Quadratmetern Bruttogeschossfläche bietet es Platz für insgesamt 230 Mitarbeiter. Damit geht die jahrzehntelange Trennung des Instituts auf verschiedene Standorte zu Ende. In den Neubau sind jetzt alle bisher noch in der Seestraße in der Stuttgarter Innenstadt untergebrachten Teile des Max-Planck-Instituts für Metallforschung umgezogen einschließlich der assoziierten Institute der Universität Stuttgart: das Institut für Metallkunde, das Institut für Nichtmetallische Anorganische Materialien sowie Teile des Instituts für Theoretische und Angewandte Physik. Das Land Baden-Württemberg hat sich deshalb mit ca. 9 Millionen Euro an den Gesamtkosten für den Neubau in Höhe von ca. 28 Millionen Euro beteiligt.

Die enge Zusammenarbeit zwischen dem Max-Planck-Institut für Metallforschung und der Universität Stuttgart hat eine lange Tradition - sie geht auf das Jahr 1934 zurück, als das 1921 in Berlin gegründete Institut nach Stuttgart übersiedelte. Heute sind fünf der Wissenschaftlichen Mitglieder des Max-Planck-Instituts für Metallforschung gleichzeitig Ordentliche Professoren an der Universität.

Die Ausbildung des wissenschaftlichen Nachwuchses ist für die Zukunft von Wissenschaft und Forschung in Deutschland von elementarer Bedeutung. Die Max-Planck-Gesellschaft hat daher gemeinsam mit den Universitäten eine Initiative zur Nachwuchsförderung gestartet: International Max Planck Research Schools. Das Max-Planck-Institut für Metallforschung, das Max-Planck-Institut für Festkörperforschung und die Universität Stuttgart haben gemeinsam ein solches Doktorandenprogramm etabliert.

Seit den sechziger Jahren hat sich das Max-Planck-Institut für Metallforschung laut Aussage eines Fachgutachters zum "Motor der deutschen Materialwissenschaft" entwickelt - und der Platz wurde knapp. Mit Unterstützung des Landes Baden-Württemberg und der Stadt Stuttgart hat die Max-Planck-Gesellschaft daher 1968 auf dem ehemaligen Büsnauer Hof nahe dem Universitätsgelände in Stuttgart-Vaihingen zuerst das Pulvermetallurgische Laboratorium errichtet: Diese Außenstelle wurde zur Keimzelle des heutigen Campus. In den Jahren 1973 bis 1975 folgte ein großer Gebäudekomplex, in dem das damalige Teilinstitut für Physik des Max-Planck-Instituts für Metallforschung und das Max-Planck-Institut für Festkörperforschung untergebracht wurden einschließlich einer Reihe gemeinsamer Einrichtungen der beiden Stuttgarter Max-Planck-Institute. Für diese Erweiterung ist ebenso wie für den jetzt in Betrieb genommenen Neubau das Architekturbüro Brenner & Partner, Stuttgart, in Zusammenarbeit mit der Bauabteilung der Max-Planck-Gesellschaft verantwortlich.

Am Max-Planck-Institut für Metallforschung werden heute schwerpunktmässig metallische und keramische Werkstoffe sowie Verbunde aus diesen Materialien synthetisiert und mit zumeist hochauflösenden Messmethoden analysiert. Das Spektrum der untersuchten Materialien reicht von metallischen Hochtemperaturwerkstoffen, insbesondere für den Turbinenbau, über keramische Strukturwerkstoffe für hohe Verschleißfestigkeit und Oxidationsbeständigkeit bei höchsten Temperaturen bis hin zu Materialien mit extrem kleinen Dimensionen für die Mikroelektronik und Mikrosystemtechnik. Neben den speziellen Forschungseinrichtungen in den einzelnen Abteilungen des Instituts stehen allen Forschern gleichermaßen umfangreiche Service-Einrichtungen zur Verfügung, zum Beispiel auf den Gebieten der Metallographie, chemischen Analytik, Röntgenographie, Oberflächenanalytik und Hochspannungs-Elektronenmikroskopie ebenso wie Anlagen für Tieftemperatur-Untersuchungen, Dünnschichttechnik, aber auch für Forschungsarbeiten mit hochenergetischen Teilchen aus einem Pelletron-Beschleuniger. Zusammen mit dem Max-Planck-Institut für Festkörperforschung, an dem mit Prof. Klaus von Klitzing der Nobelpreisträger für Physik des Jahres 1985 arbeitet, den genannten drei Universitätsinstituten und dem Max-Planck-Institut für Metallforschung ist für insgesamt 1000 Mitarbeiter in Stuttgart-Büsnau ein Campus für Materialwissenschaft entstanden, der laut Prof. Fritz Aldinger, Geschäftsführender Direktor des Max-Planck-Instituts für Metallforschung "national und international seinesgleichen sucht".

Am Max-Planck-Institut für Metallforschung ist ein Berufskolleg für Metallographie eingerichtet. Das Berufskolleg ist eine private, staatlich anerkannte Ergänzungsschule, die als Vollzeitschule betrieben wird. Die Ausbildungszeit beträgt drei Jahre. Für die praktische Ausbildung stellt das Institut seine mit modernen Forschungseinrichtungen ausgerüsteten Laboratorien zur Verfügung. Schulleiter ist Prof. Dr. Manfred Rühle, Direktor am Max-Planck-Institut für Metallforschung.

Zu der Festveranstaltung am Montag, 27. Mai 2002, um 14.00 Uhr, im Großen Hörsaal der Max-Planck-Institute, Heisenbergstraße 1, Stuttgart-Büsnau, aus Anlass der Einweihung des 2. Bauabschnitts des Max-Planck-Instituts für Metallforschung haben sich viele Gäste aus dem In- und Ausland angesagt. Nach der Begrüßung durch Prof. Fritz Aldinger, Geschäftsführender Direktor des Max-Planck-Instituts für Metallforschung, folgen Grußworte von Prof. Peter Frankenberg, Minister für Wissenschaft, Forschung und Kunst des Landes Baden-Württemberg, Dr. Wolf-Dieter Dudenhausen, Ministerialdirektor im Bundesministerium für Bildung und Forschung, Prof. Achilleas Mitsos, Generaldirektor des Department Forschung der Europäischen Kommission, Gabriele Müller-Trimbusch, Bürgermeisterin der Landeshauptstadt Stuttgart, Prof. Dieter Fritsch, Rektor der Universität Stuttgart, Prof. Chong Yang Kim, Präsident der Hanyang Universität in Seoul/Südkorea und Prof. Martin Jansen, dem Geschäftsführenden Direktor des benachbarten Max-Planck-Instituts für Festkörperforschung, Stuttgart.

Nach der Ansprache von Prof. Hubert Markl, Präsident der Max-Planck-Gesellschaft, hält Prof. Eduard Arzt, Direktor am Max-Planck-Institut für Metallforschung, den Festvortrag mit dem Titel "Metallforschung in Stuttgart - Vom Talkessel zu neuen Höhen". Im Anschluss an die Veranstaltung besteht Gelegenheit zur Besichtigung des 2. Bauabschnitts.

Tags darauf, am 28. und 29. Mai, treffen sich die Wissenschaftler im neuen Hörsaal 2R4 des Max-Planck-Instituts für Metallforschung in der Heisenbergstraße 3 zu dem Workshop über "Advanced Materials", in dem das Max-Planck-Institut für Metallforschung über neuere Ergebnisse seiner wissenschaftlichen Arbeiten der Fachwelt berichten wird.

Dr. Bernd Wirsing | Pressemitteilung
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Veranstaltungsnachrichten:

nachricht Von festen Körpern und Philosophen
23.02.2018 | Deutsche Physikalische Gesellschaft (DPG)

nachricht Spannungsfeld Elektromobilität
23.02.2018 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Veranstaltungsnachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics