Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn die Elektronenorbitale wie Tag- und Nachtveilchen blühen

15.04.2002


Augsburger Workshop über Symmetrie in makroskopischen Quantenzuständen als Auftakt einer internationalen PiShift-Konferenzserie der European Science Foundation -


Vom 21. bis zum 23. April 2002 findet in Augsburg ein internationaler Workshop über "Symmetrie in makroskopischen Quantenzuständen" statt. 80 Physiker aus Deutschland, England, Frankreich, Israel, Italien, Japan, Kanada, den Niederlanden, Russland, Schweden, der Schweiz, und den USA (u.a. Berkeley, Caltech, Stanford) werden hier sowohl theoretische wie quantitativ-experimentelle Aspekte des Phänomens der symmetrischen Elektronen-Ordnung in Supraleitern diskutieren. Den Eröffnungsvortrag hält Prof. Dr. Dr. h. c. mult. Alex Müller (Zürich), der 1987 für die Entdeckung der Hochtemperatur-Supraleitung zusammen mit Georg Bednorz den Physik-Nobelpreis erhalten hat.

"Bei tiefen Temperaturen", so erläutert der Augsburger Organisator des Workshops, Prof. Dr. Jochen Mannhart, die Thematik, "verhalten sich in Supraleitern alle Elektronen identisch. Sie bilden ein großes Elektronenorbital. Die Größe dieses Orbitals kann sich im Zentimeter- oder gar im Meterbereich bewegen. Es ist so groß wie das Materialstück selbst und weist eine Symmetrie auf, etwa so wie Blütenblätter einer Blume. Dabei unterscheiden sich die Orbitale konventioneller und unkonventioneller Supraleiter: In den konventionellen sind sie kugelförmig, man kann sie sich vorstellen wie eine Löwenzahnblüte; in den unkonventionellen dagegen erinnert ihre Symmetrie an diejenige von Tag- und Nachtveilchen, in deren Blüten sich die Farben der jeweils benachbarten Blätter maximal unterscheiden: die Phasen der Wellenfunktion sind um 180º (also um pi) verschoben (english: shift). In unserem Workshop, der hier am Augsburger EKM den Auftakt zu einer Konferenzreihe im Rahmen des speziell diesem Phänomen gewidmeten PiShift-Programmes der European Science Foundation (ESF) gibt, wollen wir bilanzieren, welche Fortschritte in jüngerer Zeit auf theoretischer wie auf experimenteller Ebene bei der Bestimmung der Symmetrie von Ordnungsparametern speziell in unkonventionellen Supraleitern erzielt worden sind. Und wir wollen die Konsequenzen diskutieren, die diese ’Tag- und Nachtveilchen-Symmetrie’ für die Anwendung dieser Materialien hat."

Die dreitägige Workshop, den auch das Bundesministerium für Bildung und Forschung (BMBF) im Rahmen des Projekts "Elektronische Korrelationen und Magnetismus" (EKM) unterstützt, findet im Tagungszentrum Haus St. Ulrich statt. Am Abend des 22. April werden die Konferenzteilnehmer vom Oberbürgermeister der Stadt Augsburg im Goldenen Saal des Augsburger Rathauses empfangen.

KONTAKT UND WEITERE INFORMATIONEN:

Prof. Dr. Jochen Mannhart
Lehrstuhl für Experimentalphysik VI/EKM
Universität Augsburg
86135 Augsburg
Telefon ++49(0)821/598-3650
Telefax ++49(0)821/598-3652 
jochen.mannhart@physik.uni-augsburg.de

Klaus P. Prem | idw
Weitere Informationen:
http://www.physik.uni-augsburg.de/exp6/pishift/index.shtml

Weitere Berichte zu: Elektronenorbital Symmetrie

Weitere Nachrichten aus der Kategorie Veranstaltungsnachrichten:

nachricht Die „Panama Papers“ aus Programmierersicht
22.03.2017 | Hochschule für Technik, Wirtschaft und Kultur Leipzig

nachricht Über Raum, Zeit und Materie
22.03.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Veranstaltungsnachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie