Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Beiträge zu einer "Grünen Chemie"

05.09.2001


BioTrans 2001 - Internationale Tagung zu Biokatalyse und Biotransformation vom 2.9. bis 7.9. an der TU Darmstadt


Vom 2.-7. September findet in Darmstadt die BioTrans 2001 statt, eine internationale Fachtagung auf dem Gebiet der chemischen Synthese mittels Biokatalyse und Biotransformation.


Highlights aus dem Programm:

Die moderne Biotechnologie bietet innovative Ansätze für die Entwicklung einer nachhaltig zukunftsverträglichen, ressourcenschonenden Wirtschaftsweise. Dies ist ein wichtiger Beitrag zu einer "Grünen Chemie" - grün steht nicht für parteipolitische Ziele, sondern für eine verantwortungsvoll umweltbewusste Philosophie der Risikovermeidung. Auf der BioTrans 2001 nimmt beispielsweise die Suche zur Ablösung von besonders problematischen klassisch-chemischen Oxidationsverfahren einen breiten Raum ein, da man sich beim Ersatz durch biokatalytische Verfahrensweisen einen besonders hohen Nutzen in der Schadstoff- und Schwermetallvermeidung verspricht.

Ein weiterer Schwerpunkt ist die Nutzung von Enzymen aus sogenannten extremophilen Mikroorganismen. Hierunter versteht man Lebewesen, die sich an außergewöhnlich lebensfeindliche Umstände angepasst haben wie hohe Temperatur oder Druck, oder Resistenz gegen Säuren und Alkalien etc. Bekannteste Beispiele sind Bakterien, die in unmittelbarer Nähe von Tiefseevulkanen bei Temperaturen von über 100°C leben, oder in Geysiren im Yellowstone Park. Deren Zellbestandteile müssen also besonders robust ausgestattet sein und sind daher für die Nutzung in industriellen Prozessen besonders interessant (u.a. auch als Waschmittelenzyme). Die Kultivierung extremophiler Bakterien ist im Labor natürlich sehr schwierig, daher ist der auf der BioTrans 2001 vorgestellte Fortschritt auf diesem Gebiet besonders bemerkenswert.

In der anwendungsnahen Biokatalyseforschung ist eine Beschleunigung der Innovationszyklen unabdingbar, um ihre Konkurrenzfähigkeit gegenüber der alten Technologie zu verbessern. Hier spielt die Gentechnik eine herausragende Rolle. Die jüngste Entschlüsselung des menschlichen Erbguts hat weltweit Schlagzeilen gemacht, obwohl der erhoffte breite Nutzen vermutlich erst nach Jahrzehnten erreicht werden kann. Dramatischere - weil unmittelbare - Auswirkungen auf die angewandte Biokatalyse kann da die Entschlüsselung von weit kleineren und übersichtlicheren Genomen haben, was für Dutzende von Mikroorganismen inzwischen erreicht wurde. Bei solchen primitiven Lebewesen ist die Funktion der im Erbgut kodierten Eiweißmoleküle meist bekannt oder viel rascher abzuleiten, obendrein sind sie meist weitaus stabiler und daher für technische Applikationen weit attraktiver. Der Bedarf an Biokatalysatoren mit einem bestimmten Eigenschaftsprofil ist somit gezielter aus dem Repertoire der bekannten Gensequenzen zu decken.
Dieser Fortschritt hat eine heute endlich erfolgreiche Entwicklung möglich gemacht, nämlich die Neukonstruktion und Optimierung gewünschter Stoffwechselwege in Mikroorganismen für die Produktion komplexer Naturstoffe. Hierbei bedient man sich gezielt der Kombination solcher Gene aus verschiedenartigen Organismen, die für leistungsfähige Enzyme kodieren. Hiermit gelingt es Bakterien so zu modifizieren, dass diese aus einfachen und billigen nachwachsenden Rohstoffen beispielsweise direkt solche Chemikalien herstellen, die sonst nur auf Erdölbasis aufwendig produziert werden können, oder sie können hochkomplizierte Oligosaccharide erzeugen, wofür man im Labor mindestens ein Dutzend Schritte, viele teure Reagenzien und mehrere Wochen Zeit benötigen würde.

Eine besonderes Highlight im Hinblick auf gentechnische Innovationen zur Verkürzung von Innovationszyklen in der Biokatalyse nimmt auf der BioTrans 2001 die sogenannte "Evolution im Reagenzglas" ein zur Erzeugung optimierter Enzyme. Dies wird beispielsweise durch "gene shuffling" erreicht, eine neuartige Methode zur Zufallsmutagenese des Erbguts. Hierbei wird die kodierende DNS quasi zerhackt und dann ungeordnet neu zusammengeklebt, sodass zigtausende von Varianten entstehen, aus denen dann die Beste herausgesucht werden kann. Dieses Verfahren stellt eine Revolution auf der Suche nach optimierten Biokatalysatoren dar, weil so ein Ergebnis in kürzester Zeit erreicht werden kann ohne mühevolle Planung oder die zeitaufwendige Auswertung von Zwischenstadien. Auf der Tagung wurden bereits zahlreiche höchst erfolgreiche Pionierleistungen mit dieser Technologie vorgestellt.

Organisator der Tagung, die von der Deutschen Bundesstiftung Umwelt gesponsert wird, ist Prof. Dr. Wolf-Dieter Fessner vom Institut für Organische Chemie der TUD.

Pressekontakt: Prof. Dr. Wolf-Dieter Fessner, Institut für Organische Chemie, Technische Universität Darmstadt, Tel: 06151/16-6666, während der Konferenz: -6190,
E-Mail: fessner@tu-darmstadt.de,

Sabine Gerbaulet | idw
Weitere Informationen:
http://www.biotrans.tu-darmstadt.de/

Weitere Berichte zu: BioTrans Enzym

Weitere Nachrichten aus der Kategorie Veranstaltungsnachrichten:

nachricht Internationale Konferenz zur Digitalisierung
19.04.2018 | Leibniz Universität Hannover

nachricht 124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus
19.04.2018 | Deutsche Gesellschaft für Innere Medizin e. V.

Alle Nachrichten aus der Kategorie: Veranstaltungsnachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics