Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Im Universum überall - und doch wenig erforscht

10.06.2008
Internationale Plasma-Konferenz ICOPS 2008 zeigt neue Erkenntnisse und Anwendungen des "Vierten Aggregatzustandes"

Während das Verhalten von Festkörpern, Flüssigkeiten und Gasen bereits sehr gut erforscht ist, gibt es beim Verständnis und bei der technischen Anwendung von Plasmen noch viele offene Fragen. Plasmen sind ionisierte Gase, die freie Ladungsträger wie Ionen und Elektronen enthalten.

In diesem "Plasmazustand" befindet sich mehr als 99 % der sichtbaren Materie im Universum, zum Beispiel auch die Sonnen. Neueste Forschungsergebnisse zum so genannten vierten Aggregatzustand liefert die 35. "International Conference on Plasma Science (ICOPS 2008)", die in diesem Jahr vom KIT organisiert wird. Sie findet vom 16. bis 19. Juni im Kongresszentrum Karlsruhe statt.

Die Themen der international renommierten englischsprachigen Konferenz, die erst zum zweiten Mal außerhalb der USA stattfindet, reichen von atmosphärischen und Weltraumplasmen, Plasmen zur umweltfreundlichen Energiegewinnung durch kontrollierte Kernfusion über deren Einsatz bei Elementarteilchenbeschleunigern bis hin zu Plasma-Raketentriebwerken. Die Vorträge zeigen die vielfältigen Anwendungen von Plasmen in der Industrie, Umwelttechnik, Medizin, Biologie und Chemie.

... mehr zu:
»ICOPS »KIT »Kernfusion »Plasma »Universum

Plasmen kommen heute auch bei der Herstellung von dünnen Schutz- und Funktionsschichten (Korrosionsschutz, Barriereschichten, Schichten zur Werkzeughärtung) zum Einsatz, beim Fertigen künstlicher Diamanten, beim Ätzen feinster Strukturen auf Halbleiterchips und in der Entwicklung von neuartigen, stromsparenden Plasmalichtquellen und Plasma-Flachbildschirm-Fernsehern. Die Wundbehandlung mit so genannten kalten Plasmen zeigt neue Wege in der Medizin auf.

Einen Rekord halten die Karlsruher Wissenschaftler mit den am KIT entwickelten Hochleistungsmikrowellen, den so genannten Gyrotron-Röhren. Mit diesen Generatoren werden magnetisch eingeschlossene Plasmen auf Sonnentemperaturen (100 Millionen Grad) aufgeheizt und stabilisiert. Ziel ist die Energiegewinnung durch Kernfusion. Hinsichtlich Energie und Leistung - 1.7 Millionen Kilojoule bei nahezu 1 Megawatt Leistung -, die mit einer solchen Gyrotron-Röhre erzeugt werden, stehen die Karlsruher derzeit an der Weltspitze. Die Heizleistung des am KIT entwickelten Gyrotrons entspricht etwa 1200 Küchen-Mikrowellenherden.

Zur Konferenz erwarten die Organisatoren etwa 600 Teilnehmer aus 42 Ländern in der Fächerstadt.

Im Karlsruher Institut für Technologie (KIT) schließen sich das Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft und die Universität Karlsruhe zusammen. Damit wird eine Einrichtung international herausragender Forschung und Lehre in den Natur- und Ingenieurwissenschaften aufgebaut. Im KIT arbeiten insgesamt 8000 Beschäftigte mit einem jährlichen Budget von 700 Millionen Euro. Das KIT baut auf das Wissensdreieck Forschung - Lehre - Innovation.

Die Karlsruher Einrichtung ist ein führendes europäisches Energieforschungszentrum und spielt in den Nanowissenschaften eine weltweit sichtbare Rolle. KIT setzt neue Maßstäbe in der Lehre und Nachwuchsförderung und zieht Spitzenwissenschaftler aus aller Welt an. Zudem ist das KIT ein führender Innovationspartner für die Wirtschaft.

Weiterer Kontakt:

Prof. Manfred Thumm
Institut für Hochleistungsimpuls- und Mikrowellentechnik (IHM)
Tel.: +49 7247 82-2441
E-Mail: manfred.thumm@ihm.fzk.de

Dr. Elisabeth Zuber-Knost | idw
Weitere Informationen:
http://www.kit.edu
http://www.icops2008.org

Weitere Berichte zu: ICOPS KIT Kernfusion Plasma Universum

Weitere Nachrichten aus der Kategorie Veranstaltungsnachrichten:

nachricht Von festen Körpern und Philosophen
23.02.2018 | Deutsche Physikalische Gesellschaft (DPG)

nachricht Spannungsfeld Elektromobilität
23.02.2018 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Veranstaltungsnachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics