Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie die Künstliche Intelligenz vom menschlichen Gehirn lernt

16.01.2008
Wenn Roboter sich selbstständig auf unbekanntem Terrain bewegen sollen, müssen sie lernen und Rückschlüsse ziehen können. Dabei helfen so genannte rückkoppelnde neuronale Netzwerke (RNN), die auch bei vielen Anwendungen in der Medizin und Biologie sowie der Bildverarbeitung und Internetsuche eine Rolle spielen. Sie sind Thema einer internationalen Tagung vom 20. bis 25. Januar im Informatikzentrum Schloss Dagstuhl. Informatiker diskutieren dort, wie Erkenntnisse aus der Hirnforschung und der Künstlichen Intelligenz kombiniert werden können.

Künstliche neuronale Netzwerke orientieren sich an der Denkweise des menschlichen Gehirns. Sie werden schon seit einigen Jahren von Forschung und Industrie eingesetzt, um in großen Datenmengen nach Mustern zu suchen. Das kommt zum Beispiel bei der automatischen Gesichtserkennung, bei Tornado-Frühwarnsystemen oder in der Genforschung vor.

Der Computer lernt dabei selbstständig dazu und optimiert die Ergebnisse. Was ein Computer jedoch bisher noch nicht so perfekt nachahmen kann, sind die ständigen Rückkopplungen, die sich im menschlichen Gehirn abspielen. Sie sind notwendig, um auf vorhandenes Wissen zurückzugreifen und sich immer wieder auf neue Situationen einzustellen. Hier sollen die rückkoppelnden neuronalen Netzwerke eine Methodik liefern, die zu besseren Ergebnissen führt.

Ihre Mechanismen zur Rückkopplung sind vor allem dann gefragt, wenn sich im zeitlichen Ablauf oder im Raum etwas verändert. Ein Haushalts-Roboter sollte sich auch dann noch in einer Wohnung zurecht finden, wenn Möbel verschoben wurden. Das Wetter oder Aktienkurse versucht man über mehrere Tage vorherzusagen, auch wenn sich viele Faktoren laufend verändern. Hierfür müssen die Wissenschaftler in Dagstuhl jedoch noch viele theoretische Probleme lösen und Fragen beantworten wie zum Beispiel: Wie kann man zeitliche Zusammenhänge intern so darstellen, dass ein effizienter und fehlertoleranter Zugriff zu jedem Zeitpunkt möglich ist? Wie können zeitliche Abhängigkeiten über viele Zeitschritte hinweg erkannt werden? Wie kann garantiert werden, dass sich über die Zeit kleine Rechenfehler nicht aufaddieren? Wie kann das Zusammenspiel von komprimierten Informationen, etwa in Form von Regeln oder aktuellen Sensordaten, aussehen? Die Wissenschaftler in Dagstuhl erhoffen sich, dass Mechanismen der rückkoppelnden Verarbeitung von Information im menschlichen Gehirn neue Ansätze auch für technische Lösungen bieten.

... mehr zu:
»Hirnforschung »Rückkopplung

An der internationalen Tagung in Dagstuhl nehmen Wissenschaftler aus verschiedenen Forschungsrichtungen wie der Künstlichen Intelligenz, Logik und Theoretischen Informatik teil. Einige der Informatiker arbeiten mit Biologen und Medizinern in der Hirnforschung zusammen. Die meisten Teilnehmer werden aus Deutschland, anderen europäischen Ländern und den USA anreisen. Organisiert wurde die Tagung von den Wissenschaftlern Luc De Raedt, Katholieke Universiteit Leuven (Belgien), Barbara Hammer, Technische Universität Clausthal, Pascal Hitzler, Universität Karlsruhe, und Wolfgang Maass, Technische Universität Graz (Österreich).

Hintergrund:

Schloss Dagstuhl lädt das ganze Jahr über Wissenschaftler aus aller Welt ins nördliche Saarland ein, um über neueste Forschungsergebnisse in der Informatik zu diskutieren. Rund 3.000 Informatiker von Hochschulen, Forschungseinrichtungen und aus der Industrie nehmen jährlich an den wissenschaftlichen Veranstaltungen in Dagstuhl teil. Seit 2005 gehört Schloss Dagstuhl zur Leibniz-Gemeinschaft, in der zurzeit 83 führende außeruniversitäre Forschungsinstitute und wissenschaftliche Serviceeinrichtungen in Deutschland vertreten sind.

Dr. Roswitha Bardohl
Tel. (0681) 302-3847
Email: presse@dagstuhl.de
Kompetenzzentrum Informatik der Universität des Saarlandes:
Friederike Meyer zu Tittingdorf
Tel. (0681) 302-58099
Email: presse@cs.uni-sb.de

Dr. Roswitha Bardohl | idw
Weitere Informationen:
http://www.dagstuhl.de
http://www.dagstuhl.de/08041
http://www.dagstuhl.de/ueber-dagstuhl/presse/downloads/

Weitere Berichte zu: Hirnforschung Rückkopplung

Weitere Nachrichten aus der Kategorie Veranstaltungsnachrichten:

nachricht Von festen Körpern und Philosophen
23.02.2018 | Deutsche Physikalische Gesellschaft (DPG)

nachricht Spannungsfeld Elektromobilität
23.02.2018 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Veranstaltungsnachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics