Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Weniger Partikelemissionen

26.01.2011
Motoren mit Direkteinspritzung emittieren ultrafeine Rußpartikel. Diesen Vorgang zu untersuchen und der Partikelemission entgegenzuwirken, ist Ziel zweier Teilprojekte des Sonderforschungsbereichs „Instationäre Verbrennung“. Eigens für die Untersuchungen haben Wissenschaftler des KIT eine neue laserdiagnostische Messtechnik entwickelt.

Feinstaubverordnung und Umweltzonen haben das Thema Feinstaubemissionen in die öffentliche Wahrnehmung gerückt. Ein Großteil vor allem der ultrafeinen Partikel gelangt in Form von Rußteilchen mit den Abgasen von Diesel- und neuerdings auch Otto-Motoren in die Umwelt. Gerade diese ultrafeinen Partikel mit einem Durchmesser kleiner als ein zehntausendstel Millimeter können bis tief in die Lunge eindringen und die Gesundheit des Menschen gefährden.

In modernen Diesel- und inzwischen auch Otto-Verbrennungsmotoren wird der Kraftstoff zur Verbrauchsoptimierung mit hohem Druck direkt in die Brennräume der Zylinder eingespritzt. Dabei kommt es während der Verbrennung unmittelbar am Einspritzstrahl zu äußerst brennstoffreichen Zonen, in denen zwangsläufig Ruß entsteht. Werden die vor allem in frühen Phasen der Verbrennung entstehenden Rußpartikel im weiteren Verlauf nicht oxidiert und damit verbrannt, gelangen sie mit dem Abgas des Motors in die Umwelt. Partikelfilter in Dieselfahrzeugen verhindern zwar die Partikelemission weitestgehend, erhöhen jedoch den Fahrzeugpreis und den Kraftstoffverbrauch.

In zwei interdisziplinären Teilprojekten des Sonderforschungsbereichs (SFB) 606 „Instationäre Verbrennung: Transportphänomene, Chemische Reaktionen, Technische Systeme“, als dessen Sprecher Professor Henning Bockhorn vom KIT fungiert, erforschen Wissenschaftlerinnen und Wissenschaftler die Bildung und Oxidation von Ruß in Verbrennungsmotoren mit Direkteinspritzung. Sie setzen moderne laserdiagnostische Messmethoden ein, um in optisch zugänglichen Zylinder-Brennräumen Rußkonzentration, Partikelgrößen und Teilchenanzahldichten zu ermitteln.

Die dabei gewonnenen Erkenntnisse ermöglichen es, die Rußemission der Motoren zu beeinflussen und damit der Partikelemission entgegenzuwirken. Darüber hinaus dienen die Messergebnisse dazu, mathematische Modelle zu erstellen, um die physikalisch-chemischen Prozesse bei der Bildung und Oxidation von Ruß quantitativ zu beschreiben. „Derartige Modelle könnten künftig bei der Entwicklung neuer Motoren eingesetzt werden, um das Verhalten unter verschiedenen Betriebsbedingungen zu simulieren“, erklärt einer der beteiligten Projektleiter, Professor Rainer Suntz vom Institut für Technische Chemie und Polymerchemie des KIT. „Im Vergleich zu experimentellen Untersuchungen ließen sich dadurch erheblich Zeit und Kosten einsparen.“

Eigens für die Untersuchungen haben Forscher des KIT eine neue laserdiagnostische Messtechnik entwickelt: Zwei zeitlich unmittelbar aufeinanderfolgende Laserpulse generieren mehrere Messsignale innerhalb einer zehnmillionstel Sekunde. Damit lassen sich Rußkonzentration, Partikelgrößen sowie die Teilchenanzahl im Brennraum eines Zylinders des Motors mit hoher räumlicher und zeitlicher Auflösung zweidimensional bestimmen.

Die Messungen zeigen eine mehr oder weniger starke Rußbildung direkt über der Kolbenoberfläche. Im eigentlichen Brennraum darüber ist dagegen relativ wenig Ruß zu beobachten. Der Ruß über der Kolbenoberfläche stammt aus sogenannten Pool-Fires – brennenden Kraftstoffpfützen, die sich durch Benetzung des Kolbens aufgrund der Einspritzung kurz vor dem oberen Totpunkt bilden. Dieser Kraftstoff wird vergleichsweise spät verbrannt, wenn er durch die in der Gasphase ablaufende Verbrennung ausreichend erwärmt wurde. Zudem sind die Temperaturen dieser Pool-Fires relativ gering, da die Verdampfung des Kraftstoffs und die hohe Wärmeleitung des Aluminiumkolbens der Verbrennung viel Wärme entziehen. Das führt dazu, dass Zeit und Temperatur für die vollständige Verbrennung der durch Pool-Fires gebildeten Rußpartikel nicht genügen – diese werden mit dem Abgas des Motors emittiert.

In der Energieforschung ist das Karlsruher Institut für Technologie (KIT) eine der europaweit führenden Einrichtungen: Das KIT-Zentrum Energie vereint grundlegende und angewandte Forschung zu allen relevanten Energieformen für Industrie, Haushalt, Dienstleistungen und Mobilität. In die ganzheitliche Betrachtung des Energiekreislaufs sind Umwandlungsprozesse und Energieeffizienz mit einbezogen. Das KIT-Zentrum Energie verbindet exzellente technik- und naturwissenschaftliche Kompetenzen mit wirtschafts-, geistes- und sozialwissenschaftlichem sowie rechtswissenschaftlichem Fachwissen. Die Arbeit des KIT-Zentrums Energie gliedert sich in sieben Topics: Energieumwandlung, erneuerbare Energien, Energiespeicherung und Energieverteilung, effiziente Energienutzung, Fusionstechnologie, Kernenergie und Sicherheit sowie Energiesystemanalyse.

Das Karlsruher Institut für Technologie (KIT) ist eine Körperschaft des öffentlichen Rechts und staatliche Einrichtung des Landes Baden-Württemberg. Es nimmt sowohl die Mission einer Universität als auch die Mission eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft wahr. Das KIT verfolgt seine Aufgaben im Wissensdreieck Forschung – Lehre – Innovation.

Monika Landgraf | idw
Weitere Informationen:
http://www.kit.edu

Weitere Nachrichten aus der Kategorie Ökologie Umwelt- Naturschutz:

nachricht Frühwarnsignale für Seen halten nicht, was sie versprechen
05.12.2016 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Besserer Schutz vor invasiven Arten
15.11.2016 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

Alle Nachrichten aus der Kategorie: Ökologie Umwelt- Naturschutz >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie