Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Study finds energy use in cities has global climate effects

29.01.2013
Researchers find that heat given off by metropolitan areas can lead to continental-scale winter warming in high latitudes

The heat generated by everyday energy consumption in metropolitan areas is significant enough to influence the character of major atmospheric circulation systems, including the jet stream during winter months, and cause continental-scale surface warming in high latitudes, according to a trio of climate researchers that includes Ming Cai, a professor in Florida State University's Department of Meteorology.

Led by Guang Zhang, a research meteorologist at Scripps Institution of Oceanography at the University of California, San Diego, the scientists report in the journal Nature Climate Change that waste heat released in major cities in the Northern Hemisphere causes as much as 1 degree C (1.8 degrees F) of continental-scale winter warming in high latitudes of the North America and Eurasian continents. They added that this effect helps to explain the disparity between actual observed warming in the last half-century and the amount of warming predicted by computer models that only include anthropogenic greenhouse gases and aerosols.

The study, "Energy Consumption and the Unexplained Winter Warming Over Northern Asia and North America," appears in online editions of the journal on Jan. 27. The study was funded in part by the National Oceanic and Atmospheric Administration's Climate Program Office.

Cai, Zhang and Aixue Hu of the National Center for Atmospheric Research in Boulder, Colo., considered the energy consumption — from heating buildings to powering vehicles — that generates waste heat release. The world's total energy consumption in 2006 was 16 terawatts (one terawatt equals 1 trillion watts). Of that, 6.7 terawatts were consumed in the 86 metropolitan areas considered in this study.

"The burning of fossil fuel not only emits greenhouse gases but also directly effects temperatures because of heat that escapes from sources like buildings and cars," Hu said.

The release of waste heat is different from energy that is naturally distributed in the atmosphere, the researchers noted. The largest source of heat, solar energy, warms the Earth's surface. Atmospheric circulations distribute that energy from one region to another. Human energy consumption distributes energy that remained dormant and sequestered for millions of years, mostly in the form of oil or coal. Though the amount of human-generated energy is a small portion of that transported by nature, it is highly concentrated in urban areas.

"The world's most populated metropolitan areas, which also have the highest rates of energy consumption, are along the east and west coasts of the North American and Eurasian continents, underneath the most prominent atmospheric circulation troughs and ridges," Cai said. "The concentrated and intensive release of waste energy in these areas causes a noticeable interruption to normal atmospheric circulation systems, leading to remote surface temperature changes far away from the regions where the waste heat is generated."

The authors report that the influence of urban heat can widen the jet stream at the extratropics, or area outside the tropics. They add that the heating is not uniform. Partially counterbalancing it, the changes in major atmospheric systems cool areas of Europe by as much as 1 degree C, with much of the temperature decrease occurring in the fall.

The study does not address whether the urban heating effect disrupts atmospheric weather patterns or plays a role in accelerating global warming, though Zhang said drawing power from renewable sources such as solar or wind provides a societal benefit in that it does not add net energy into the atmosphere.

Zhang said the climate impact this research studied is distinct from the so-called urban heat island effect, an increase in the warmth of cities compared to unpopulated areas caused by land use changes. Such island effects are mainly a function of the heat collected and re-radiated by pavement, buildings and other urban features.

"What we found is that energy use from multiple urban areas collectively can warm the atmosphere remotely, thousands of miles away from the energy consumption regions," Zhang said. "This is accomplished through atmospheric circulation change."

They also find observational evidence indicates that the waste heat can be the "missing forcing" that would account for the discrepancy between the observed temperature change and that is simulated in computer models forced only by anthropogenic greenhouse gases and aerosols. They suggest that the influence of energy consumption should be considered, in addition to heat-trapping gases and aerosols, as necessary anthropogenic factors in computer models to predict the future climate.

NOAA's mission is to understand and predict changes in the Earth's environment, from the depths of the ocean to the surface of the sun, and to conserve and manage the nation's coastal and marine resources.

Ming Cai | EurekAlert!
Further information:
http://www.fsu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Minimized water consumption in CSP plants - EU project MinWaterCSP is making good progress
05.12.2017 | Steinbeis-Europa-Zentrum

nachricht Jena Experiment: Loss of species destroys ecosystems
28.11.2017 | Technische Universität München

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Im Focus: Geburtshelfer und Wegweiser für Photonen

Gezielt Photonen erzeugen und ihren Weg kontrollieren: Das sollte mit einem neuen Design gelingen, das Würzburger Physiker für optische Antennen erarbeitet haben.

Atome und Moleküle können dazu gebracht werden, Lichtteilchen (Photonen) auszusenden. Dieser Vorgang verläuft aber ohne äußeren Eingriff ineffizient und...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Papstar entscheidet sich für tisoware

08.12.2017 | Unternehmensmeldung

Natürliches Radongas – zweithäufigste Ursache für Lungenkrebs

08.12.2017 | Unternehmensmeldung

„Spionieren“ der versteckten Geometrie komplexer Netzwerke mit Hilfe von Maschinenintelligenz

08.12.2017 | Biowissenschaften Chemie