Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 


Study determines source of oil sheens near the site of Deepwater Horizon

A chemical analysis of oil sheens recently found floating at the ocean's surface near the site of the Deepwater Horizon disaster indicates that the source is pockets of oil trapped within the wreckage of the sunken rig.

First reported to the U.S. Coast Guard by British Petroleum (BP) in mid-September 2012, the oil sheens raised public concern that the Macondo well, which was capped in July 2010, might be leaking. However, both the Macondo well and the natural oil seeps common to the Gulf of Mexico were confidently ruled out, according to researchers from UC Santa Barbara and Woods Hole Oceanographic Institution (WHOI). The research was published today in Environmental Science & Technology.

The researchers used a recently patented method to fingerprint the chemical makeup of the oil sheens and to estimate the location of the source based on the extent to which gasoline-like compounds evaporated from the sheens. Because every oil sample contains chemical clues pointing to the reservoir it came from, scientists can compare it to other samples to determine if they share a common source.

"This appears to be a slow leak from the wreckage of the rig, not another catastrophic discharge from a deep oil reservoir," says geochemist David Valentine, professor in the Department of Earth Sciences at UCSB. "Continued oil discharge to the Gulf of Mexico from the wreckage of the Deepwater Horizon rig is not a good thing, but there is some comfort that the amount of leakage is limited to the pockets of oil trapped within the wreckage of the rig."

Lead scientists Valentine and WHOI's Chris Reddy were eminently prepared to investigate these sheens. They have worked on Deepwater Horizon for much of the last three years, investigating a wide range of problems, including the composition of the oil, detection of subsurface plumes, the biodegradation of the oil, the fate of the dispersants, and the chemical transition from floating oil slicks to sunken tar balls.

"Because of our ongoing funding from the National Science Foundation, we were prepared to interrogate the source of mysterious oil sheens in the Gulf of Mexico," said Valentine. "We've been exploring new ways to do this for several years in the context of natural seeps and this event provided us an opportunity to apply our fundamental advances to a real-world problem. This is a classic case where fundamental science finds a real-world application."

This research analyzed 14 sheen samples skimmed from the sea surface during two trips to the Gulf of Mexico. Using comprehensive two-dimensional gas chromatography (GCxGC), a technique developed in Reddy's lab, the researchers first confirmed the sheens contained oil from the Macondo well. But the sheen samples also contained trace amounts of olefins, industrial chemicals used in drilling operations. The presence of olefins provided a fingerprint for the sheens that the scientists could compare to the library of samples they had analyzed over the past three years.

Olefins are not found in crude oil and their uniform distribution in the sheens indicated that the Macondo well was unlikely to be the source. The team surmised that the sheens must be coming from equipment exposed to olefins during drilling operations. "The occurrence of these man-made olefins in all of our sheen samples points to a single main source, which contains both Macondo oil and lesser amounts of the drilling fluids that harbor the olefins," said Valentine. "This pointed us to the wreckage of the rig, which was known to have both, as the most likely source for the sheens."

The research team compared the sheen samples to other field samples, some of which they expected would contain olefins and some they thought would not. The reference samples included two pieces of debris from Deepwater Horizon found floating in early May 2010, as well as oil collected by BP in October 2012 during an inspection of the 80-ton cofferdam that had been abandoned at the sea floor after its use in a failed attempt to cover the Macondo well in 2010.

The team's GCxGC analysis of BP's cofferdam samples definitively showed it was not the sole source of the leak as there were no olefins present. Prior to the analysis the cofferdam had become the prime suspect as the source when BP found small amounts of oil leaking from its top. BP acquired oil samples from this leak point before sealing the leak, thinking they had resolved the problem. However, the sheens on the sea surface persisted, and the lack of olefins pointed to another source entirely.

When Valentine and Reddy compared the chemical makeup of the sheens with debris found floating in 2010, they found a match. That debris, which came from the rig itself, was coated with oil and was contaminated by drilling mud olefins.

"The ability to fingerprint synthetic hydrocarbons allowed us to crack this case," Valentine said. "We were able to exclude a number of suspects and match the olefin fingerprint in the new oil slicks to that of the wreckage from the sunken rig."

The chemical analysis also told researchers which sheens had surfaced more recently than others, allowing them to reconstruct a trajectory for local ocean currents that pointed back to the oil's source. By looking for sheens that showed the least amount of evaporation, they determined that oil surfaced closer to Deepwater Horizon wreckage than the to cofferdam site.

To explain how the oil might be trapped and released from the wreckage, the scientists point out that when the Deepwater Horizon rig sank, it was holding tanks containing hundreds of barrels of a mixture of drilling mud and oil. Over time, corrosive seawater can create small holes through which oil can slowly escape to the surface. The researchers suspect that the containers on the rig holding trapped oil may be the source of the recent oil sheen.

In the process of their research, Valentine and Reddy operated with transparency, alerting the government and BP to their research plans. They believe this fostered a collegial relationship that ultimately improved their research. Throughout the effort to find the source of the oil, BP and various federal agencies showed keen interest in the independently conducted research. "We had a fruitful exchange and developed a collegial relationship with both BP and the government. Both provided us with data, and in turn we gave them a preview of our findings with no strings attached," says Valentine.

"This is a good study, but the long-lasting impacts of this effort highlight that academia can play a useful role during a crisis," said Reddy. "We can be unbiased and collaborative without losing our integrity. In this case, interacting with representatives of the government and BP is a win-win."

In addition to Valentine and Reddy, the research team consisted of WHOI postdoctoral researcher Christoph Aeppli, UCSB postdoctoral scholar Matthias Kellermann, and Robert K. Nelson, a member of the WHOI technical staff.

This research was funded by the National Science Foundation, the Gulf of Mexico Research Initiative, Woods Hole Oceanographic Institution, and the Swiss National Science Foundation Postdoctoral Fellowship.

Julie Cohen | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entdecken neues Anti-Krebs-Protein

Ein internationales Forscherteam hat ein neues Anti-Krebs-Protein entdeckt. Das Protein namens LHPP verhindert, dass sich Krebszellen in der Leber ungebremst vermehren. Zudem eignet es sich als Biomarker für die Diagnose und Prognose von Leberzellkrebs. Dies berichten Forscher unter der Leitung von Prof. Michael N. Hall vom Biozentrum der Universität Basel in «Nature».

Die Häufigkeit von Leberkrebs, auch bekannt als Leberzellkarzinom, nimmt stetig zu. In der Schweiz hat sich die Zahl der Erkrankungen in den letzten zwanzig...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: LifeTime – ein visionärer Vorschlag für ein EU-Flagschiff

Zuverlässig vorherzusagen, wann eine Krankheit ausbricht oder wie sie verläuft, erscheint wie ein Traum. Ein europäisches Konsortium will ihn Wirklichkeit werden lassen und dabei vor allem neue Technologien der Einzelzellbiologie nutzen. Führende Forscherinnen und Forscher haben daher einen Antrag für ein FET-Flagschiff mit dem Namen LifeTime eingereicht.

Nachdem das Humangenomprojekt 2001 abgeschlossen war, haben Wissenschaft und Medien das Genom als „Buch des Lebens“ bezeichnet. Darin könne man nachlesen, wie...

Im Focus: Forscher des Fraunhofer FHR begleiten Wiedereintritt der chinesischen Raumstation Tiangong-1

Die chinesische Raumstation Tiangong-1 wird in wenigen Wochen in die Erdatmosphäre eintreten und zu einem großen Teil verglühen. Dabei können auch Trümmerteile den Erdboden erreichen. Tiangong-1 kreist unkontrolliert und mit ca. 29 000 km/h um die Erde. Die Wiedereintrittsprognose kann derzeit nur im Bereich von mehreren Tagen angegeben werden. Die Wissenschaftler des Fraunhofer FHR in Wachtberg bei Bonn beobachten Tiangong-1 bereits seit Wochen mit ihrem TIRA (Tracking and Imaging Radar) System, einem der leistungsfähigsten Radare zur Weltraumbeobachtung weltweit, um das nationale Weltraumlagezentrum und die ESA mit ihrer Expertise bei den Wiedereintrittsprognosen zu unterstützen.

Nach Verlust des Funkkontakts mit Tiangong-1 im Jahr 2016 ist es aufgrund der niedrigen Bahnhöhe unausweichlich, dass die chinesische Raumstation in die...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Alle Focus-News des Innovations-reports >>>



Industrie & Wirtschaft

Hybrid-elektrisch angetriebene Verkehrsflugzeuge – Zukunft oder Fiktion?

20.03.2018 | Veranstaltungen

Konferenz zur virtuellen Realität kommt nach Reutlingen

19.03.2018 | Veranstaltungen

Veranstaltungen zur Digitalisierung in der Weiterbildung

19.03.2018 | Veranstaltungen

Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
Aktuelle Beiträge

Neue Akteure der Atherosklerose identifiziert

22.03.2018 | Medizin Gesundheit

Forscher entwickeln Lösung für sparsamen digitalen Pigmentdruck auf Textil

22.03.2018 | Materialwissenschaften

Modulares Safety-Konzept erhöht Flexibilität beim Anlagenumbau

22.03.2018 | HANNOVER MESSE

Weitere B2B-VideoLinks
im innovations-report
in Kooperation mit academics