Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stickstoff bleibt lange Zeit im Boden

05.11.2013
Als Dünger eingebrachter Nitrat-Stickstoff kann bis zu acht Jahrzehnte im Boden verbleiben.

Die Verunreinigung von Trinkwasser durch Stickstoff in Form von Nitrat ist ein Problem unserer Zeit. Auch wenn viele Mechanismen, die mit der Düngung und Aufnahme von Nährstoffen durch Pflanzen zusammen hängen, bereits ausführlich untersucht wurden, ist bisher kaum bekannt, wie lange der als Nitrat eingebrachte Stickstoff wirklich im Boden bleibt. Wissenschaftler haben jetzt ihre Ergebnisse aus einem dreißig Jahre dauernden Langzeitexperiment veröffentlicht.


Bodenprofil: Was passiert mit dem Nitrat im Boden? (Quelle: © iStockphoto.com/klikk)

Nitrat im Boden

Nitrat (NO3-) ist eine Stickstoffverbindung, die direkt von den Pflanzen aufgenommen werden kann. Es gelangt hauptsächlich durch Düngung landwirtschaftlicher Flächen in den Boden, aber auch durch übermäßige Düngung von Gärten oder durch undichte Abwasserleitungen. Nitrat wird ebenfalls von Mikroorganismen gebildet. Sie wandeln dabei Ammonium-Ionen in Nitrat um (Nitrifikation).

Da Nitrat-Ionen negativ geladen sind, werden sie von den überwiegend ebenfalls negativ geladenen Bodenteilchen (Humus, Tonminerale) nur schlecht festgehalten („sorbiert“) und schnell ausgewaschen.

Die Gefahren von hohen Nitrat-Konzentrationen

In der Nahrung kann Nitrat in hohen Mengen gesundheitsschädlich wirken: Im menschlichen Darm wird es über Nitrit zu den krebserregenden Nitrosaminen umgewandelt. Daher darf Nitrat einen gewissen Grenzwert im Trinkwasser (in Deutschland 50 mg/l) nicht überschreiten. Besonders betroffen sind Kleinkinder im Alter von ein bis drei Jahren. Durch den Verzehr von z.B. Spinat mit hohen Nitrat-Gehalten erhöht sich das Risiko an Methämoglobinämie zu erkranken – eine Erkrankung, die zu einer verminderten Sauerstoffversorgung des Körpers führt.

Neben der Belastung des Trinkwassers kann ein zu hohes Nitratangebot auch zur Überdüngung (Eutrophierung) von Gewässern beitragen. In Deutschland wird das Ausbringen von Wirtschaftsdünger (meist in Form von Gülle, d. h. Exkremente von Nutztieren) durch die Düngeverordnung (DüV) von 1996 geregelt. Diese soll verhindern, dass zu viele Nährstoffe in den Boden und damit in das Grundwasser gelangen.

Boden unter der Lupe

Die Vorgänge, die zur Eutrophierung und zur Belastung des Trinkwassers führen sind gut untersucht. Relativ unbekannt ist aber, wie lange der einmal eingebrachte Stickstoff sich im Boden aufhält und welche Veränderungen er durchmacht, bis er wieder im Grundwasser auftaucht.

Für Praktiker ist Stickstoff ein essentiell notwendiger Nährstoff, der nicht in Vorratsspeicherung, sondern unmittelbar in der Vegetationsperiode zur Verfügung gestellt werden muss. Nur so ist Stickstoff pflanzenphysiologisch wirksam und fördert deren Wachstum. Die nun vorliegenden Ergebnisse werfen ein etwas anderes Licht auf den Makronährstoff Stickstoff.

Für ihre Untersuchungen nutzten die Wissenschaftler zwei Lysimeter. Lysimeter bestehen in der Regel aus 2 mal 2 mal 2 Meter großen Zylindern, die in den Boden eingelassen werden. Sie werden mit einem unveränderten Bodenstück befüllt. Die in den Zylinder eingebauten Messinstrumente ermöglichen die Untersuchung verschiedener Bodenparameter wie Nährstoffhaushalt und Sickerwasseraustrag.

In der vorliegenden Untersuchung wurden beide Lysimeter mit Ackerboden befüllt. Es wurden im Wechsel Zuckerrüben und Winterweizen angebaut. Zu Beginn des Experiments im Jahr 1982 bekam jedes Lysimeter eine einmalige Gabe Nitratdünger, der mit dem stabilen Stickstoff-Isotop N-15 angereichert war. Da N-15 in der Natur nur relativ selten vorkommt, konnte so der Weg dieser Stickstoffgabe gut verfolgt werden. Pflanzenmasse, Böden und Sickerwasser wurden regelmäßig untersucht.

Der Weg des Stickstoffs

Der 1982 eingebrachte Nitrat-Stickstoff konnte auch fast 30 Jahre nach dem Eintrag noch nachgewiesen werden. Nach 27 Jahren (2009) waren knapp über 60 Prozent von den Pflanzen aufgenommen worden. Insgesamt konnten noch mehr als 10 Prozent des ursprünglich eingebrachten Nitrats im Boden nachgewiesen werden.

Diese Ergebnisse bestätigten im Wesentlichen die Erwartungen: Nitrat wird zu einem großen Teil von den Pflanzen und Bodenorganismen aufgenommen, der Rest wird über das Sickerwasser ausgewaschen. Auffällig war allerdings, dass entgegen der Erwartungen auch knapp 30 Jahre später noch immer markiertes Nitrat im Sickerwasser gefunden werden konnte. Daher untersuchten die Forscher dieses Nitrat zusätzlich auf seine Herkunft.

Bodenorganismen bauen Nitrat um

Dazu betrachteten sie den in das Nitrat-Molekül eingebauten Sauerstoff genauer: Sauerstoff kommt in der Natur neben dem „normalen“ Sauerstoffatom (O16) auch als schweres Isotop (O18) vor. Dieses Isotop hat im Bodenwasser eine geringere Konzentration als im Oberflächenwasser. Der Sauerstoff, der im Sickerwasser-Nitrat eingebaut war, wies ebenfalls eine geringere Konzentration an schweren Isotopen auf als jener, der im ursprünglichen Dünger-Nitrat eingebaut war. Daraus schlossen die Forscher, dass das Sickerwasser-Nitrat im Boden neu gebildet wurde, mit Sauerstoff aus dem Boden. Für sie galt dies als Beweis dafür, dass das ursprünglich eingebrachte Nitrat durch Bodenorganismen verwertet und der Stickstoff später durch den Vorgang der Nitrifikation in neue Nitratmoleküle eingebaut wurde.

Der ursprünglich eingebrachte Nitrat-Stickstoff wurde also über 27 Jahre hinweg in anderer Form gespeichert und nach und nach wieder zu Nitrat zusammengebaut und an das Wasser abgegeben. So erklärt sich, warum nach 27 Jahren noch markierte Nitrat-Ionen in der Lösung waren, obwohl Nitrat im Boden nur schlecht sorbiert wird und eigentlich schnell verschwinden sollte.

Nitrateinträge halten sich lange

Die Forscher schätzen, dass es noch mindestens weitere 50 Jahre dauern wird, bis der markierte Stickstoff im Boden nicht mehr nachweisbar sein wird. Das bedeutet, dass auch noch weitere fünf Jahrzehnte markierter Nitrat-Stickstoff im Sickerwasser auftauchen wird. Es werden also auch weiterhin kontinuierlich kleine Mengen von N-15-Nitrat (pro Jahr etwa 4 bis 5 Prozent des noch vorhandenen N-15-Stickstoffs) an das Sickerwasser abgegeben.

Diese Ergebnisse decken sich mit Untersuchungen anderer Forscherteams, zum Beispiel am Mississippi-River in den USA, wo auch nach dem starken Absenken von Düngergaben über Jahre keine Verringerung der Nitratlast in den untersuchten Gewässern festgestellt werden konnte. Daher wird es für die Zukunft wichtig, bei Berechnungen der Düngermengen die hier beobachteten Verzögerungen mit einzubeziehen. Denn offenbar belasten sogar einmalige Nitratgaben das Grundwasser viel länger, als bisher angenommen wurde. Andererseits bietet sich auch die Chance, die Mikroorganismen gezielter als Speicher für Stickstoff zu nutzen. Vorausgesetzt dieser wird in einer für die Pflanzen verfügbaren Form und zum richtigen Zeitpunkt abgegeben.

Quelle:
Sebilo, M. et al (2013): Long-term fate of nitrate fertilizer in agricultural soils. In: Proceedings of the National Academy of Sciences (PNAS) (21. Oktober 2013), doi: 10.1073/pnas.1305372110.
Zum Weiterlesen:
Ein Weidegras macht die Landwirtschaft grüner - Brachiaria verhindert, dass Stickstoffdünger aus dem Boden entweicht
Schuld ist der Stickstoff - Kohlendioxid-Ausstoß in Folge von veränderter Landnutzung wurde unterschätzt

Grundwasser-Inventur alarmiert Wissenschaftler und Praktiker

Sebilo, M. et al | Pflanzenforschung.de
Weitere Informationen:
http://www.pflanzenforschung.de/index.php?cID=9484

Weitere Nachrichten aus der Kategorie Ökologie Umwelt- Naturschutz:

nachricht Von der Weser bis zur Nordsee: PLAWES erforscht Mikroplastik-Kontaminationen in Ökosystemen
20.09.2017 | Universität Bayreuth

nachricht Der Monsun und die Treibhausgase
18.09.2017 | Forschungszentrum Jülich

Alle Nachrichten aus der Kategorie: Ökologie Umwelt- Naturschutz >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie