Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schnell sinkende Quallen fördern die Kohlendioxid-Aufnahme der Ozeane

28.05.2013
Die wachsende Menge an gelatinösem Plankton könnte helfen, das CO2-Problem zu mindern.

Denn in Feld- und Laborexperimenten zeigten Forscher des GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, dass tote Quallen und Manteltiere weitaus schneller absinken als Phytoplankton und Meeresschnee. Sie konsumieren Plankton und im Wasser schwebende Partikel besonders zügig und tragen damit in besonderem Maße zum Export von Biomasse und Kohlenstoff in die tieferen Schichten des Ozeans bei.


Ansammlung von Quallen im freien Ozean. Das sogenannte gelatinöse Plankton, zu dem Quallen gehören, könnte eine größere Rolle beim Transport von Kohlenstoff ins Innere des Ozeans spielen, als bisher vermutet wurde. Foto: Veronica Fuentes

Die Ozeane nehmen etwa 25 Prozent des durch menschliche Aktivitäten freigesetzten Kohlendioxids (CO2) auf. Seit Beginn der Industrialisierung haben sie bereits die Hälfte des anthropogenen CO2 absorbiert. Millionen mikroskopisch kleiner Plankton-Organismen machen diesen unschätzbaren Service überhaupt erst möglich: Verschiedene Arten verwandeln im Meerwasser gelöstes Kohlendioxid aus der Atmosphäre durch Photosynthese in organischen Kohlenstoff und anderes biologisch verwertbares Material.

Quallen und pelagische Tunikaten, im Wasser schwimmende Manteltiere, leben von kleinerem Plankton. Wenn sie am Ende ihrer Lebenszyklen zum Meeresboden sinken, nehmen sie Kohlenstoff mit hinab, speichern ihn in der Tiefe oder geben ihn als Nahrung weiter. So kann sich in den oberen Schichten neues CO2 lösen. Darüber hinaus bauen kalkbildende Organismen anorganischen Kohlenstoff in ihren Kalkschalen ein. Auch sie unterstützen die biologische Pumpe.

Um die Effizienz der biologischen Kohlenstoffpumpe besser abschätzen zu können, benötigen Wissenschaftler Informationen über die Sink-Geschwindigkeiten der unterschiedlichen Organismen. Gemeinsam mit Kollegen aus Deutschland, Spanien, Großbritannien und den Vereinigten Staaten führte Dr. Mario Lebrato, Biologischer Ozeanograph in der Arbeitsgruppe von Prof. Andreas Oschlies am GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, daher Feld- und Laborexperimente mit gelatinösem Plankton durch.
In ihrem neuesten Artikel im internationalen Fachmagazin „Limnology and Oceanography“ geben die Forscher erstmals die Sink-Geschwindigkeiten für organische Überreste von Quallen und pelagische Tunikaten an. Diese Informationen ergänzen einen früheren Artikel im der selben Fachzeitschrift zur Exporteffizienz dieser Tiere für Biomasse. In der Kombination ergibt sich erstmals eine belastbare Abschätzung für die globalen Exportkapazitäten von gelatinösem Plankton.

Für ihre Experimente sammelten die Forscher verschiedene Arten von Scyphozoen (Schirm- oder Scheibenquallen), Ctenophoren (Rippenquallen) und Thaliaceen, (Salpen) in der Ostsee, im Mittelmeer, im Atlantik und im Südpolarmeer. Den Sinkprozess beobachtete und filmte Dr. Pedro de Jesus Mendes vom OceanLab Bremen in mit Meerwasser gefüllten Kunststoff-Zylindern. Anschließend wurden die Verhältnisse von organischem Kohlenstoff und Stickstoff der trockenen Biomasse sowie deren Gewicht gemessen. Der Kieler Exzellenzcluster „Ozean der Zukunft“, das European Project on Ocean Acidification (EPOCA), das Deutsche Verbundprojekt zur Ozeanversauerung BIOACID (Biological Impacts of Ocean Acidification) und das amerikanische National Science Foundation Office for Polar Programs unterstützen die Arbeiten.

„Die Sinkgeschwindigkeit des gelatinösen Planktons ist viel, viel höher als wir erwartet hatten, etwa 500 bis 1.600 Meter pro Tag“, resümiert Lebrato. „Und, was Forscher, die sich mit der biologischen Kohlenstoffpumpe beschäftigen, wirklich erstaunte: Sie ist höher als die des nicht-kalkbildenden Phytoplanktons und des Meeresschnees – den wichtigsten Quellen für sinkende Partikel und organischen Kohlenstoff für den inneren Ozean.“ Durch schnelleres Herabsinken erreichen die Biomasse und ihre Bestandteile die Tiefe ohne weiter zersetzt zu werden. Dort setzt mikrobieller Abbau CO2 frei, das am Boden ohne Kontakt zur Atmosphäre über Jahrtausende gespeichert werden kann. Außerdem erhalten benthische Organismen durch das schnelle Herabsinken hochwertigere Nahrung. Auf Festlandsockeln und in Hanglagen kann Biomasse den Meeresboden innerhalb eines Tags oder noch zügiger erreichen.

Innerhalb der untersuchten Arten hatten Scyphozoen im Durchschnitt den höchsten Kohlenstoffgehalt (26,97 Prozent), gefolgt Thaliaceen (17,20 Prozent) und Ctenophoren (1,40 Prozent). Der Kohlenstoffgehalt des gelatinösen Planktons ist im Durchschnitt zwar niedriger als der des Phytoplanktons oder von Meeresschnee. Aber seine großen Populationen, die sich über Hunderte von Quadratkilometern in den Ozeanen ausbreiten, können in Kombination mit der hohen Sink-Geschwindigkeit große Mengen an Kohlenstoff zum Meeresboden transportieren.

„Unser Datensatz gibt einen ersten Überblick und Vergleichsmöglichkeiten für Modellierer und Experimentierer. Spätere Studien können die Bedeutung von gelatinösem Plankton für den Kohlenstoffexport und die Effizienz der biologischen Pumpe weiter vertiefen“, urteilt Lebrato. „Wir werden häufig gefragt, wie viel organischen Kohlenstoff und CO2 das gelatinöse Plankton weltweit in die Tiefe tragen könnte, ob seine Kapazitäten denen von Phytoplankton und Meeresschnee ähneln. Und ob eine Zunahme von Quallen in der Zukunft den Export von organischem Kohlenstoff und die CO2-Speicherung fördern könnte. Weil bis vor kurzem nur wenige Menschen glaubten, dass die Quallen eine wichtige Rolle im Kohlenstoffkreislauf spielen könnten, wurden diese Tiere von den großen biogeochemischen Forschungsprogramme ausgeschlossen. In der Folge sind die verfügbaren Daten bis jetzt mager, und wir stehen erst am Anfang, die grundlegenden Eigenschaften zu begreifen, die es uns ermöglichen, ein besseres Verständnis der Rolle von Quallen und pelagischen Tunikaten im den globalen Kohlenstoffkreislauf zu begreifen.“

Originalartikel:
Lebrato, M., de Jesus Mendes, P., Steinberg, D. K., Cartes, J. E., Jones, B. M., Birsa, L. M., Benavides, R. und Oschlies, A. (2013) Jelly biomass sinking speed reveals a fast carbon export mechanism Limnology and Oceanography, 58 (3), http://dx.doi.org/10.4319/lo.2013.58.3.1113
Lebrato, M., Pahlow, M., Oschlies, A., Pitt, K. A., Jones, D. O. B., Molinero, J. C. und Condon, R. H. (2011) Depth attenuation of organic matter export associated with jelly falls Limnology and Oceanography, 56
http://dx.doi.org/10.4319/lo.2011.56.5.1917
Lebrato, M., Pitt, K. A., Sweetman, A. K., Jones, D. O. B., Cartes, J. E., Oschlies, A., Condon, R. H., Molinero, J. C., Adler, L., Gaillard, C., Lloris, D. und Billett, D. S. M. (2012) Jelly-falls historic and recent observations: a review to drive future research directions Hydrobiologia, 690 (1), http://dx.doi.org/10.1007/s10750-012-1046-8

Weitere Informationen:

http://www.futureocean.org Exzellenzcluster „Ozean der Zukunft“
http://www.bioacid.de BIOACID
http://www.epoca-project.eu EPOCA

Andreas Villwock | idw
Weitere Informationen:
http://www.geomar.de/

Weitere Nachrichten aus der Kategorie Ökologie Umwelt- Naturschutz:

nachricht Von der Weser bis zur Nordsee: PLAWES erforscht Mikroplastik-Kontaminationen in Ökosystemen
20.09.2017 | Universität Bayreuth

nachricht Der Monsun und die Treibhausgase
18.09.2017 | Forschungszentrum Jülich

Alle Nachrichten aus der Kategorie: Ökologie Umwelt- Naturschutz >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie