Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schadstoffärmere Flugzeugtriebwerke - Experimente in der Schwerelosigkeit geben neue Impulse

27.11.2009
Alle reden über die Klimaschädlichkeit von Kohlendioxid. Die schädlichen Auswirkungen von Stickoxiden sind jedoch noch weit gefährlicher. Bei Autos und Lastwagen kann man dem Problem mit Katalysatoren zu Leibe rücken, bei Flugzeugtriebwerken nicht. Wissenschaftler der Technischen Universität München (TUM) haben sich nun dieses Problems angenommen.

Als am 22. November um 12:15 Uhr Ortszeit die europäische Forschungsrakete TEXUS-46 vom europäische Startgelände Esrange nahe der schwedischen Stadt Kiruna abhob, hatte sie ein besonderes Experiment an Bord: In der Schwerelosigkeit der sechsminütigen ballistischen Flugphase wurde in einer speziellen Brennkammer die Verbrennung perfekter sphärischer Brennstofftropfen einer definierten Größe und eines bestimmten Abstands zueinander analysiert. Ziel der Experimente war es, die Entstehung schädlicher Abgase bei der Verbrennung flüssiger Kraftstoffe besser zu verstehen.

Im Gegensatz zu dem häufig als Klimakiller diskutierten Kohlendioxid konzentriert sich das Team um Klaus Mösl vom Lehrstuhl für Thermodynamik der TU München auf den Ausstoß der giftigen und noch umweltschädlicheren Stickoxide (NOX). Zwar überwiegt die Menge des typischerweise freigesetzten Kohlendioxids in absoluten Zahlen, jedoch sind die schädlichen Auswirkungen der Stickoxide um ein Vielfaches höher. Die giftigen NOX-Abgase entstehen insbesondere bei der Verbrennung flüssiger Kraftstoffe wie Kerosin und Diesel. Bei Autos und Lastwagen kann man den NOX-Ausstoß durch Abgasnachbehandlung mittels Katalysatoren reduzieren. Bei Flugzeugantrieben bietet einzig eine intelligente Verbrennungsführung Abhilfe.

Der Treibstoff muss so verbrannt werden, dass NOX gar nicht erst entsteht. Allerdings fehlen den Ingenieuren in den Entwicklungszentren bis dato die dazu nötigen Grundlagen, um die vorhandenen Technologien entsprechend anzupassen und zu optimieren.

Zur Bestätigung von Laborversuchen und zur Klärung offener Fragen gingen die Garchinger Forscher eine Kooperation mit dem Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) in Bremen und der japanischen Raumfahrtbehörde JAXA ein. Gemeinsam wurde ein bestehender Versuchsaufbau der Japaner weiterentwickelt, ergänzt und optimiert. Während sich die japanischen Wissenschaftler dafür interessierten, wie sich eine fortschreitende Flamme grundsätzlich über einer Tropfenreihe ausbreitet, sammelten die Wissenschaftler der TUM Abgasproben. Diese wurden nach Bergung der wissenschaftlichen Nutzlast Anfang der Woche in Garching detailliert analysiert. Die entscheidende Frage für die TUM-Wissenschaftler war dabei: Wie viel des anfangs flüssigen Brennstoffs muss vor der Zündung verdampft werden, um eine essentielle Reduzierung der NOX-Emissionen zu erzielen?

In den achtziger Jahren des vorigen Jahrhunderts hatten amerikanische Wissenschaftler vorhergesagt, dass weniger Stickoxid entstehen würde, je mehr Brennstoff eines Tropfensprays vor dessen Zündung bereits verdampft. Ihre Annahme, dass es hier einen linearen Zusammenhang gäbe, fand Eingang in viele Publikationen und Lehrbücher. Doch diese Annahme war weitestgehend falsch, wie sich bei Mösls Versuchen herausstellte. Die Versuche zeigten, dass eine Tropfenvorverdampfung zunächst praktisch keinen Einfluss hat, ab einem bestimmten Punkt aber reduziert sich die Stickoxidmenge mit wachsendem Verdampfungsgrad sehr stark. Für die Konstrukteure von Flugzeugtriebwerken hat das eine wichtige Konsequenz: Nur wenn sie es erreichen, dass die Treibstofftröpfchen vor dem Zünden bereits zu einem großen Teil verdampft sind, können sie den Stickoxid-Ausstoß spürbar reduzieren.

Die Mitarbeiter des Lehrstuhls für Thermodynamik arbeiten nun daran, aus den entdeckten Gesetzmäßigkeiten Berechnungsmodelle und Simulationen zu entwickeln, mit denen die Konstrukteure neue, emissionsärmere Triebwerke entwickeln können. "Die chemischen und physikalischen Gesetze können wir nur unter idealen Bedingungen präzise untersuchen", erläutert Klaus Mösl.

"Nur in der Schwerelosigkeit ist die Gaswolke aus verdampftem Kraftstoff ideal um den Rest des Tropfens verteilt." Bei stationären Gasturbinen kann die Stickoxid-Emission durch Vormischung und präzise Steuerung des Verbrennungsvorgangs deutlich gesenkt werden. Bis dies jedoch auch bei Flugzeugturbinen mit ihren starken Lastwechseln möglich ist, ist noch einige Forschungsarbeit zu leisten.

Das Experiment wurde durch das Deutsche Zentrum für Luft- und Raumfahrt (DLR) und die Europäische Raumfahrtagentur (ESA) finanziert. Die Experimentergebnisse fließen in verschiedene internationale Projekte ein.

Ansprechpartner:

Technische Universität München
Lehrstuhl für Thermodynamik
Dipl.-Ing. Klaus Mösl
Boltzmannstr. 15, 85748 Garching
Telefon: 089 289 16241
E-Mail: moesl@td.mw.tum.de

Dr. Ulrich Marsch | idw
Weitere Informationen:
http://www.td.mw.tum.de/tum-td/de/forschung/themen/microgravity

Weitere Nachrichten aus der Kategorie Ökologie Umwelt- Naturschutz:

nachricht Paradiese in Gefahr: Bayreuther Studierende forschen auf den Malediven zu Plastikmüll in den Meeren
13.04.2017 | Universität Bayreuth

nachricht Ozeanversauerung: Wie individuell sind die Reaktionen?
06.04.2017 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

Alle Nachrichten aus der Kategorie: Ökologie Umwelt- Naturschutz >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Berührungslose Schichtdickenmessung in der Qualitätskontrolle

25.04.2017 | Veranstaltungen

Forschungsexpedition „Meere und Ozeane“ mit dem Ausstellungsschiff MS Wissenschaft

24.04.2017 | Veranstaltungen

3. Bionik-Kongress Baden-Württemberg

24.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neuer Blue e+ Chiller von Rittal - Exakt regeln und effizient kühlen

25.04.2017 | HANNOVER MESSE

RWI/ISL-Containerumschlag-Index: Kräftiger Anstieg setzt sich fort

25.04.2017 | Wirtschaft Finanzen

Pharmacoscopy: Mikroskopie der nächsten Generation

25.04.2017 | Medizintechnik