Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schadstoffärmere Flugzeugtriebwerke - Experimente in der Schwerelosigkeit geben neue Impulse

27.11.2009
Alle reden über die Klimaschädlichkeit von Kohlendioxid. Die schädlichen Auswirkungen von Stickoxiden sind jedoch noch weit gefährlicher. Bei Autos und Lastwagen kann man dem Problem mit Katalysatoren zu Leibe rücken, bei Flugzeugtriebwerken nicht. Wissenschaftler der Technischen Universität München (TUM) haben sich nun dieses Problems angenommen.

Als am 22. November um 12:15 Uhr Ortszeit die europäische Forschungsrakete TEXUS-46 vom europäische Startgelände Esrange nahe der schwedischen Stadt Kiruna abhob, hatte sie ein besonderes Experiment an Bord: In der Schwerelosigkeit der sechsminütigen ballistischen Flugphase wurde in einer speziellen Brennkammer die Verbrennung perfekter sphärischer Brennstofftropfen einer definierten Größe und eines bestimmten Abstands zueinander analysiert. Ziel der Experimente war es, die Entstehung schädlicher Abgase bei der Verbrennung flüssiger Kraftstoffe besser zu verstehen.

Im Gegensatz zu dem häufig als Klimakiller diskutierten Kohlendioxid konzentriert sich das Team um Klaus Mösl vom Lehrstuhl für Thermodynamik der TU München auf den Ausstoß der giftigen und noch umweltschädlicheren Stickoxide (NOX). Zwar überwiegt die Menge des typischerweise freigesetzten Kohlendioxids in absoluten Zahlen, jedoch sind die schädlichen Auswirkungen der Stickoxide um ein Vielfaches höher. Die giftigen NOX-Abgase entstehen insbesondere bei der Verbrennung flüssiger Kraftstoffe wie Kerosin und Diesel. Bei Autos und Lastwagen kann man den NOX-Ausstoß durch Abgasnachbehandlung mittels Katalysatoren reduzieren. Bei Flugzeugantrieben bietet einzig eine intelligente Verbrennungsführung Abhilfe.

Der Treibstoff muss so verbrannt werden, dass NOX gar nicht erst entsteht. Allerdings fehlen den Ingenieuren in den Entwicklungszentren bis dato die dazu nötigen Grundlagen, um die vorhandenen Technologien entsprechend anzupassen und zu optimieren.

Zur Bestätigung von Laborversuchen und zur Klärung offener Fragen gingen die Garchinger Forscher eine Kooperation mit dem Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) in Bremen und der japanischen Raumfahrtbehörde JAXA ein. Gemeinsam wurde ein bestehender Versuchsaufbau der Japaner weiterentwickelt, ergänzt und optimiert. Während sich die japanischen Wissenschaftler dafür interessierten, wie sich eine fortschreitende Flamme grundsätzlich über einer Tropfenreihe ausbreitet, sammelten die Wissenschaftler der TUM Abgasproben. Diese wurden nach Bergung der wissenschaftlichen Nutzlast Anfang der Woche in Garching detailliert analysiert. Die entscheidende Frage für die TUM-Wissenschaftler war dabei: Wie viel des anfangs flüssigen Brennstoffs muss vor der Zündung verdampft werden, um eine essentielle Reduzierung der NOX-Emissionen zu erzielen?

In den achtziger Jahren des vorigen Jahrhunderts hatten amerikanische Wissenschaftler vorhergesagt, dass weniger Stickoxid entstehen würde, je mehr Brennstoff eines Tropfensprays vor dessen Zündung bereits verdampft. Ihre Annahme, dass es hier einen linearen Zusammenhang gäbe, fand Eingang in viele Publikationen und Lehrbücher. Doch diese Annahme war weitestgehend falsch, wie sich bei Mösls Versuchen herausstellte. Die Versuche zeigten, dass eine Tropfenvorverdampfung zunächst praktisch keinen Einfluss hat, ab einem bestimmten Punkt aber reduziert sich die Stickoxidmenge mit wachsendem Verdampfungsgrad sehr stark. Für die Konstrukteure von Flugzeugtriebwerken hat das eine wichtige Konsequenz: Nur wenn sie es erreichen, dass die Treibstofftröpfchen vor dem Zünden bereits zu einem großen Teil verdampft sind, können sie den Stickoxid-Ausstoß spürbar reduzieren.

Die Mitarbeiter des Lehrstuhls für Thermodynamik arbeiten nun daran, aus den entdeckten Gesetzmäßigkeiten Berechnungsmodelle und Simulationen zu entwickeln, mit denen die Konstrukteure neue, emissionsärmere Triebwerke entwickeln können. "Die chemischen und physikalischen Gesetze können wir nur unter idealen Bedingungen präzise untersuchen", erläutert Klaus Mösl.

"Nur in der Schwerelosigkeit ist die Gaswolke aus verdampftem Kraftstoff ideal um den Rest des Tropfens verteilt." Bei stationären Gasturbinen kann die Stickoxid-Emission durch Vormischung und präzise Steuerung des Verbrennungsvorgangs deutlich gesenkt werden. Bis dies jedoch auch bei Flugzeugturbinen mit ihren starken Lastwechseln möglich ist, ist noch einige Forschungsarbeit zu leisten.

Das Experiment wurde durch das Deutsche Zentrum für Luft- und Raumfahrt (DLR) und die Europäische Raumfahrtagentur (ESA) finanziert. Die Experimentergebnisse fließen in verschiedene internationale Projekte ein.

Ansprechpartner:

Technische Universität München
Lehrstuhl für Thermodynamik
Dipl.-Ing. Klaus Mösl
Boltzmannstr. 15, 85748 Garching
Telefon: 089 289 16241
E-Mail: moesl@td.mw.tum.de

Dr. Ulrich Marsch | idw
Weitere Informationen:
http://www.td.mw.tum.de/tum-td/de/forschung/themen/microgravity

Weitere Nachrichten aus der Kategorie Ökologie Umwelt- Naturschutz:

nachricht Der Monsun und die Treibhausgase
18.09.2017 | Forschungszentrum Jülich

nachricht Artenschützer schlagen Alarm: Papageien noch bedrohter als befürchtet
15.09.2017 | Justus-Liebig-Universität Gießen

Alle Nachrichten aus der Kategorie: Ökologie Umwelt- Naturschutz >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

10. Cottbuser Medienrechtstage zu »Fake News, Hate Speech und Whistleblowing«

18.09.2017 | Veranstaltungen

26. bis 30. September: Größte deutsche Pharmazeuten-Konferenz findet in Saarbrücken statt

18.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Simulation von Energienetzwerken für Strom, Gas und Wärme

19.09.2017 | Energie und Elektrotechnik

Positron trifft Kernspin

19.09.2017 | Medizintechnik

Nano-Kapseln ermöglichen Produktion von spezifischen Stoffwechselmolekülen

19.09.2017 | Biowissenschaften Chemie