Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

RWE startet CO2-Konversions-Pilotanlage auf Basis einer von der Jacobs University optimierten Meeresalgentechnologie

06.11.2008
Am 6. November 2008 wurde eine neuartige Algenzuchtpilotanlage zur CO2-Konversion in Industrieabgasen in Niederaußem bei Köln in Betrieb genommen.

Die Anlage ist Teil des dortigen Braunkohlenkraftwerks der RWE, die den Kraftwerksstandort zu Forschungs- und Entwicklungszwecken nutzt.

Prof. Dr. Laurenz Thomsen, Professor of Geosciences an der Jacobs University Bremen, ist der wissenschaftliche Leiter des Projektes, an dem sich auch das Forschungszentrum Jülich sowie die Bremer Phytolutions GmbH, die erste Firmenausgründung der Jacobs University, beteiligen. Die RWE stellte 700.000 Euro für den ersten Schritt des Projektes bereit.

Die CO2-Abtrennung aus Industrieabgasen wird in Zukunft eine bedeutende Rolle zur Reduktion von CO2-Emissionen und somit zur Eindämmung des Klimawandels spielen. Neben chemisch-physikalischen Optionen und der unterirdischen Speicherung werden zunehmend Möglichkeiten zur Umwandlung und Nutzung von CO2 diskutiert.

Eine Option der klimawirksamen Wiederverwertung von CO2 ist die CO2-Fixierung durch marine Mikroalgen sowie die Verwertung der später geernteten Algenbiomasse als Energieträger, die nun erstmals in größerem Maßstab und unter normalen Bedingungen des Kraftwerksbetriebes in der rund 600 Quadratmeter umfassenden RWE-Versuchsanlage getestet wird. Ziel des Projektes ist es, die gesamte Prozesskette - von der Algenproduktion bis zum Endprodukt - zu optimieren. Neben technischen Fragestellungen, die mit der Entwicklung dieser Technologie einhergehen, steht vor allem der Nachweis im Vordergrund, ob die Gesamtenergiebilanz von Algenproduktion und Konversion positiv ist und tatsächlich eine Netto-CO2-Minderung erzielt wird.

"Das gemeinsame Projekt mit der RWE ermöglicht es uns, die Forschung und Entwicklung für eine real taugliche Nutzung von Meeresalgen in den Bereichen Energie, nachwachsende Rohstoffe und Verminderung des Treibhauseffektes voranzutreiben", sagte Laurenz Thomsen, Jacobs-Professor und wissenschaftlicher Projektleiter anlässlich der Inbetriebnahme der Algenzuchtpilotanlage in Niederaußem. "Es ist die Fortsetzung unserer im Jahr 2004 in Bremen begonnenen Arbeiten, in denen wir das Potenzial der Algen zur Verminderung des CO2-Gehaltes von Kraftwerksrauchgas mit einem Versuchsaufbau von wenigen hundert Litern testeten. Mit rund 55.000 Litern erlaubt die heute eingeweihte Anlage erstmals die Erprobung und den Einsatz der von der Jacobs University und Phytolutions angepassten und weiterentwickelten Technologie im industriellen Maßstab."

Das Konzept der RWE-Pilotanlage basiert auf dem bio-chemischen Prozess der Photosynthese, bei dem Pflanzen CO2 aufnehmen und Lichtenergie in chemische Energie umwandeln. Im Vergleich zu Landpflanzen haben Mikroalgen, nur wenige Millimeterbruchteile groß, jedoch eine sieben- bis zehnfach höhere Wachstumsrate. Die Folge: schnelleres Wachstum bedeutet stärkere Photosyntheseleistung und somit höheren Kohlendioxidverbrauch. In hiesigen Breiten können so bis zu 200 t/(ha*a) CO2 gebunden werden.

Die Mikroalgen-Anlage zur CO2-Fixierung im Rauchgas des Kohlekraftwerks in Niederaußem wurde in unmittelbarer Nachbarschaft des Kraftwerkstandortes errichtet. Das Rauchgas wird dem Kraftwerk hinter der Rauchgasentschwefelungsstufe entnommen und entspricht so dem Zustand, in dem es normalerweise in die Umwelt gelangt. Durch eine Zuleitung gelangt das Abgas in einen sogenannten "Blasenreaktor" mit Algensuspension. Dort vermischt es sich mit der Suspension aus Salzwasser und Mikroalgen, wobei diese bis zur Sättigung CO2 aus dem Rauchgas aufnimmt. Diese CO2-angereicherte Suspension wird in ein Gewächshaus mit transparenten, in V-Form an Trägern befestigten Kunststoffschläuchen, den Photobioreaktoren, geleitet.

In den transparenten Photobioreaktoren kommen die Algen in Kontakt mit Licht und wachsen. Das für die Photosynthese benötigte CO2 wird der Suspension von den Mikroalgen entzogen. Die Steuerung der Zuführung von frischer, CO2-angereicherter Suspension erfolgt über den pH-Wert als Indikator für den CO2-Gehalt in den Bioreaktoren. Die gleichzeitig in entsprechender Menge abgezogene Suspension wird wieder dem Blasenreaktor zur erneuten CO2-Anreicherung zugeführt. Ist die Dichte der Algen in den Wachstumsgefäßen ausreichend hoch, wird die Algensuspension statt in den Blasenreaktor in einen Erntebehälter geleitet. Die Algen werden dann vom Salzwasser getrennt. Sie haben eine pasteuse Konsistenz und stehen nun für die Weiterverarbeitung, z. B. zu Treibstoffen oder Baustoffen, bereit.

Die erste Ausbaustufe der Photobioreaktoren auf 600 m² Fläche enthält ein Volumen von ca. 55 m³ Algensuspension. Mit der Anlage können pro Jahr bis zu 6000 kg Algen (Trockensubstanz) produziert werden. Dadurch werden 12000 kg CO2 eingebunden. Insgesamt stehen für nachfolgende Erweiterungen bis zu 1000 m² Gewächshausfläche zur Verfügung.

Dr. Kristin Beck | idw
Weitere Informationen:
http://www.jacobs-university.de/

Weitere Nachrichten aus der Kategorie Ökologie Umwelt- Naturschutz:

nachricht Mit Urzeitalgen zu gesundem Wasser: Wirtschaftliches Verfahren zur Beseitigung von EDC im Abwasser
27.04.2017 | Technische Universität Bergakademie Freiberg

nachricht Plastik – nicht nur Müll
26.04.2017 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

Alle Nachrichten aus der Kategorie: Ökologie Umwelt- Naturschutz >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie