Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rätsel geknackt: Wie Feinstaub erst in der Luft entsteht

11.12.2009
Forschende des Paul Scherrer Instituts, der University of Colorado und 29 weiterer Forschungseinrichtungen aus verschiedenen Ländern haben die Zusammensetzung der organischen Anteile des Feinstaubs für verschiedene Regionen der Welt untersucht und bestimmt, aus welchen Ursprungssubstanzen er sich jeweils bildet.

So konnte erstmals geklärt werden, welche Rolle einzelne Bestandteile der Abgase für die Feinstaubbildung spielen.

Feinstaub macht krank und Feinstaub beeinflusst das Klima. Dabei entsteht nur ein Teil des Feinstaubs unmittelbar bei der Verbrennung von Treibstoffen oder Holz - der Rest bildet sich erst in der Atmosphäre aus unterschiedlichen Substanzen, die zum Teil aus Abgasen, aber auch aus natürlichen Quellen wie zum Beispiel Wäldern, stammen.

Forschende des Paul Scherrer Instituts, der University of Colorado und 29 weiterer Forschungseinrichtungen aus verschiedenen Ländern haben nun die Zusammensetzung der organischen Anteile des Feinstaubs für verschiedene Regionen der Welt untersucht und bestimmt, aus welchen Ursprungssubstanzen er sich jeweils bildet. So konnte erstmals geklärt werden, welche Rolle einzelne Bestandteile der Abgase für die Feinstaubbildung spielen. Die Untersuchungen dürften helfen, in Zukunft gezielt die Feinstaubbildung zu vermeiden und dadurch unter anderem zu besserer Luft in den Innenstädten beizutragen. Sie werden auch eine wichtige Rolle für zukünftige Klimamodelle spielen. Die Ergebnisse erscheinen am 11. Dezember im angesehenen Wissenschaftsjournal Science.

Komplexe Vorgänge in der Atmosphäre - aufs Wesentliche reduziert

Eine grosse Vielfalt an chemischen Vorgängen, bei denen grössere Moleküle in kleinere zerfallen können oder sich kleine Moleküle zu grösseren zusammenschliessen und an Feinstaubkörnchen anlagern können, findet laufend in der Atmosphäre statt. Um die wesentlichen Veränderungen der organischen Materie in der Atmosphäre zu verstehen, ist es aber nicht nötig, jede einzelne der vielen Tausend Substanzen zu verfolgen, die in der Luft enthalten sind. Wie die Forschenden zeigen konnten, reichte es, wenige bestimmte chemische Eigenheiten der Substanzen zu untersuchen, die für das Verhalten in der Atmosphäre entscheidend sind. "Zum Beispiel ist das Verhältnis von Sauerstoff- zu Kohlenstoffgehalt in einer Substanz wesentlich dafür, ob diese Wasser aufnimmt und damit, ob die Feinstaubkörnchen Keime für die Wolkenbildung sein können", erklärt André Prévôt, der das Projekt federführend am Paul Scherrer Institut betreut.

Im PSI-Labor Entstehung von Feinstaub nachgestellt

Die stete chemische Umwandlung in der Atmosphäre führt auch dazu, dass der Feinstaub in fast allen Weltgegenden ähnlich aufgebaut ist - unabhängig von den genauen Ausgangsstoffen. In ihrer Arbeit zeigen die Forschenden, dass es dennoch möglich ist, die Eigenschaften der Ausgangsstoffe aus dem Feinstaub zu rekonstruieren. Dazu haben sie zuvor in der Smogkammer des Paul Scherrer Instituts die Veränderungen einzelner Stoffe in der Atmosphäre simuliert. "Mit Hilfe dieser Ergebnisse konnten wir mit einem aufwendigen statistischen Verfahren bestimmen, welcher Art die Ausgangsstoffe waren, aus denen der Feinstaub entstanden ist. Mit zusätzlichen Verfahren wie der C14-Methode kann man dann auch die genauen Quellen bestimmen - ob zum Beispiel die Substanzen aus dem Wald oder aus Abgasen stammen" erklärt Urs Baltensperger, Leiter des Labors Atmosphärenchemie am Paul Scherrer Institut.

Feinstaub an verschiedenen Orten: Gefahr für die Gesundheit und Keim für die Wolkenbildung

Die detaillierten Untersuchungen der Feinstaubzusammensetzung machte ein neuartiges Gerät - ein spezielles Massenspektrometer - möglich, mit dem man minutengenau die Luftzusammensetzung bestimmen kann. Insgesamt haben die Forschenden an 26 verschiedenen Orten der Nordhalbkugel gemessen. Das PSI war für zwei sehr verschiedene Orte in der Schweiz zuständig: die Zürcher Innenstadt und das Jungfraujoch. Die Zürcher Messung war dabei vor allem wegen des Einflusses von Abgasen auf die Gesundheit wichtig, die Messung auf dem Jungfraujoch konzentrierte sich auf Fragen der Wolkenbildung.

Die Arbeit der PSI-Forschenden wurde vom Schweizerischen Nationalfonds SNF unterstützt.

Das Paul Scherrer Institut entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Festkörperforschung und Materialwissenschaften, Elementarteilchenphysik, Biologie und Medizin, Energie- und Umweltforschung. Mit 1300 Mitarbeitenden und einem Jahresbudget von rund 260 Mio. CHF ist es das grösste Forschungsinstitut der Schweiz.

Ansprechpartner:

Dr. André Prévôt, Leiter der Arbeitsgruppe Gasphasen- and Aerosol-Chemie, Paul Scherrer Institut, Telefon: +41 (0)56 310 42 02, E-Mail: andre.prevot@psi.ch

Prof. Dr. Urs Baltensperger, Leiter des Labors für Atmosphärenchemie, Paul Scherrer Institut, Telefon: +41 (0)56 310 24 08, E-Mail: urs.baltensperger@psi.ch

Dagmar Baroke | idw
Weitere Informationen:
http://www.psi.ch

Weitere Nachrichten aus der Kategorie Ökologie Umwelt- Naturschutz:

nachricht Müll in den Weltmeeren überall präsent: 1220 Arten betroffen
23.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Internationales Netzwerk bündelt experimentelle Forschung in europäischen Gewässern
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

Alle Nachrichten aus der Kategorie: Ökologie Umwelt- Naturschutz >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Zweites Symposium 4SMARTS zeigt Potenziale aktiver, intelligenter und adaptiver Systeme

27.03.2017 | Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Kontinentalrand mit Leckage

27.03.2017 | Biowissenschaften Chemie

Das anwachsende Ende der Ordnung

27.03.2017 | Physik Astronomie

Einfluss der Sonne auf den Klimawandel erstmals beziffert

27.03.2017 | Geowissenschaften