Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Pflanzen unter Silberstress

14.11.2012
Mit Nanosilber wachsen Feuchtpflanzen schlechter – egal ob diese in Petrischalen oder im Boden kultiviert werden. Manche Pflanzen verkraften eine Silberbelastung besser als andere. Abhängig ist die Reaktion auch von der Partikelart und der Bodenstruktur.

Ist Nanosilber (AgNP) eine Gefahr für die Ökosysteme? Nanosilber zählt zu den am häufigsten verwendeten synthetisch hergestellten Nanopartikeln. Wegen seiner antimikrobiellen Eigenschaften wird es in vielen Konsumprodukten eingesetzt und gelangt so auch in die Umwelt. Laborstudien mit Reinkulturen zeigen, dass Nanomaterialien Mikroben-, Pflanzen- und Tierzellen schädigen können.


Unterschiedliche Pflanzenarten verkraften eine Silberbelastung also unterschiedlich gut. Abhängig ist diese Reaktion auch von der Partikelart und dem Entwicklungsstadium der Pflanze (Quelle: © Fredlyfish4 / wikipedia.de).

Reinkulturen sind Zellpopulationen, die durch Vermehrung einer einzelnen Zelle bzw. eines einzelnen Mikroorganismus unter Laborbedingungen erzeugt werden – unter Ausschluss jeglicher Individuen anderer Arten. Ob sich diese Ergebnisse auch auf das natürliche Ökosystem übertragen lassen, haben Forscher nun mit zwei Experimenten untersucht. Sie beobachteten die Reaktionen von 11 Feuchtpflanzenspezies auf Nanosilber in einer Reinkultur (Experiment 1) und in Töpfen mit Erde (Experiment 2).

In der Reinkultur: Effekte auf Keimung und Wachstum

Im Reinkultur-Experiment untersuchten die Forscher, wie sich Nanosilber in unterschiedlichen Formen und Mengen auf die Keimung und das Wachstum der Pflanzen auswirkte. Hierzu ließen sie Samen jeder Spezies entweder in reinem Wasser (Kontrolle) oder in einer Nanosilberlösung quellen und kultivierten diese dann in Petrischalen. Die Nanosilberlösung enthielt Silbernitrat (AgNO3), Polymer beschichtete (PVP-AgNPs) oder Gummi arabicum beschichtete Nanosilberpartikel (GAAgNP). Auch Konzentration der Lösung wurde variiert. Nach 20 Tagen verglichen die Forscher die Keimungsrate (Verhältnis der gekeimten Samen zur Gesamtzahl) sowie die Wurzel- und Sprosslänge der untersuchten Arten.

3 von 11 Arten keimten schlechter, wenn sie mit Gummi beschichteten Nanosilberpartikeln behandelt wurden. Demgegenüber verbesserte Silbernitrat die Keimungsrate von 5 der 11 Arten. Die Polymer beschichteten Partikel hatten keinen Einfluss auf die Keimung. Einige Pflanzen reagierten auf eine Silberbelastung mit einem reduzierten Blattwachstum. Nur eine Pflanze, Carex lurida, wuchs besser. Die drei Formen von Nanosilber riefen je nach Konzentration und Spezies zudem unterschiedliche Effekte hervor: So wuchs Carex lurida nur dann besonders gut, wenn sie entweder mit Polymer beschichteten Partikeln in hoher, Gummi beschichteten Partikel in niedriger oder Silbernitratpartikeln in mittlerer Konzentration behandelt wurde. Mit wenigen Ausnahmen hatten Pflanzen unter Silberbelastung auch deutlich kürzere Wurzeln als Pflanzen der Kontrollgruppe. Besonders groß war dieser Unterschied bei Pflanzen, die mit Gummi beschichteten Partikeln behandelt wurden. Zwei Arten hatte längere Wurzeln unter Silberbelastung – warum? Die Forscher vermuten, dass das Silber den Auxintransport in der Wurzel stört und damit zu einem unkontrollierten Wurzelwachstum führt. Die langen Wurzeln könnten jedoch auch auf eine spezielle Bewältigungsstrategie hinweisen, mit der einige Pflanzenspezies versuchen, einem kontaminiertem Umfeld auszuweichen.

Im Boden: Effekte auf das Wachstum

In einem zweiten Experiment säten die Forscher Samen von je 7 Arten in Töpfe mit homogenisierter Erde. Die Erde besprühten sie entweder mit den unterschiedlichen Silberpartikeln oder mit reinem Wasser. Nach 7 Wochen wurde die Blattbiomasse getrocknet und für jede Spezies gewogen.

Während die Nanopartikel im Boden die Keimung der meisten Arten nicht beeinflussten, zeigten sich deutliche Effekte auf das Wurzel- und Sprosswachstum: Pflanzen, die mit Gummi beschichteten Partikeln behandelt wurden, waren deutlich kleiner als alle anderen Pflanzengruppen – mit einer Ausnahme: das Italienische Weidelgras (Lolium multiflorum) wuchs besser.

Interaktion Pflanze – Nanopartikel

Unterschiedliche Pflanzenarten verkraften eine Silberbelastung also unterschiedlich gut. Abhängig ist diese Reaktion auch von der Partikelart und dem Entwicklungsstadium der Pflanze. Silbernitrat begünstigte die Keimung der Pflanzen in Petrischale und Boden, während die Polymer beschichteten Partikel kaum Effekte hatten. Die Gummi beschichteten Partikel jedoch wirkten sich sowohl auf die Keimung als auch auf das Wurzel- und Blattwachstum negativ aus. Frühere Studien haben gezeigt, dass beschichtete Nanopartikel im Vergleich zu gelöstem Silber in Silbernitrat pflanzliche Zellen schädigen können. Da die Gummi beschichteten Partikel (6 nm) deutlich kleiner sind als die Polymer beschichteten (21nm), können sie die wenige Nanometer großen Poren pflanzlicher Zellen einfacher überwinden – sie reichern sich leichter an und sind toxischer. Auch die Art der Partikelhülle und die Oberflächenspannung könnten die Toxizität beeinflussen. Das vorhandene Silber-Ion verbessert die Bioverfügbarkeit von Nanosilberpartikeln. Physikalisch-chemische Prozesse im Boden und auch Interaktionen mit anderen Pflanzen können diese Bioverfügbarkeit und damit die Anreicherung von Silberpartikeln in Pflanzen jedoch beeinflussen.

Die Wurzel ist das Tor zur Pflanze

Samen sind durch ihre Schale vor schädlichen Substanzen besser geschützt als die Wurzeln und Blätter eines Keimlings. Schädliche Stoffe im Boden erreichen zuerst die Wurzeln, sie werden daher auch schneller geschädigt. Silber wird vor allem in der Wurzel angereichert, der Transport in andere Pflanzengewebe ist gering. Dies könnte erklären, warum sich Nanosilber stärker auf das Wurzelwachstum auswirkt aus auf das Blattwachstum.

Strategie: Flucht oder Ertragen

Warum reagieren Pflanzen, die im selben Boden wachsen, so unterschiedlich auf Nanosilber? Die Forscher vermuten, dass Spezies unterschiedliche Strategien entwickelt haben, um auf hohe Silberkonzentrationen zu reagieren. Während einige Arten versuchen, dem kontaminierten Boden mit langen Wurzeln zu entkommen (Flucht-Strategie), müssten Arten ohne solche Strategien diesen Stress ertragen. Bisher kann aber noch kein klarer Zusammenhang zwischen der Taxonomie und der verfolgten Anpassungsstrategie ausgemacht werden. Die Studie liefert neue Erkenntnisse zum Transport und Verbleib von Nanopartikeln in Boden kultivierten Pflanzen, zu Wechselwirkungen zwischen Pflanze und Nanopartikel sowie zum Einfluss gemischter Pflanzengesellschaften auf die Toxizität von Nanopartikeln. Für die Forschung bleibt aber noch viel zu tun. Prinzipiell lässt sich daraus schließen, dass für technische Substanzen im Rahmen einer Risikobewertung überprüft werden, wie sich diese auf den Menschen und auf natürliche Systeme auswirken.
Quelle:

Yin, Liyan et al. (2012): Effects of Silver Nanoparticle Exposure on Germination and Early Growth of Eleven Wetland Plants. PLoS ONE 7(10): e47674. doi:10.1371/journal.pone.0047674.

Yin, Liyan et al. | Pflanzenforschung.de
Weitere Informationen:
http://www.Pflanzenforschung.de

Weitere Nachrichten aus der Kategorie Ökologie Umwelt- Naturschutz:

nachricht Ein neuer Indikator für marine Ökosystem-Veränderungen - der Dia/Dino-Index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Fernerkundung für den Naturschutz
17.08.2017 | Hochschule München

Alle Nachrichten aus der Kategorie: Ökologie Umwelt- Naturschutz >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Körperenergie als Stromquelle

22.08.2017 | Energie und Elektrotechnik

Ein Quantenlineal für Biomoleküle

22.08.2017 | Biowissenschaften Chemie

Prostatakrebs: Bluttest sagt Tumorresistenz vorher

22.08.2017 | Biowissenschaften Chemie