Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Pflanzen unter Silberstress

14.11.2012
Mit Nanosilber wachsen Feuchtpflanzen schlechter – egal ob diese in Petrischalen oder im Boden kultiviert werden. Manche Pflanzen verkraften eine Silberbelastung besser als andere. Abhängig ist die Reaktion auch von der Partikelart und der Bodenstruktur.

Ist Nanosilber (AgNP) eine Gefahr für die Ökosysteme? Nanosilber zählt zu den am häufigsten verwendeten synthetisch hergestellten Nanopartikeln. Wegen seiner antimikrobiellen Eigenschaften wird es in vielen Konsumprodukten eingesetzt und gelangt so auch in die Umwelt. Laborstudien mit Reinkulturen zeigen, dass Nanomaterialien Mikroben-, Pflanzen- und Tierzellen schädigen können.


Unterschiedliche Pflanzenarten verkraften eine Silberbelastung also unterschiedlich gut. Abhängig ist diese Reaktion auch von der Partikelart und dem Entwicklungsstadium der Pflanze (Quelle: © Fredlyfish4 / wikipedia.de).

Reinkulturen sind Zellpopulationen, die durch Vermehrung einer einzelnen Zelle bzw. eines einzelnen Mikroorganismus unter Laborbedingungen erzeugt werden – unter Ausschluss jeglicher Individuen anderer Arten. Ob sich diese Ergebnisse auch auf das natürliche Ökosystem übertragen lassen, haben Forscher nun mit zwei Experimenten untersucht. Sie beobachteten die Reaktionen von 11 Feuchtpflanzenspezies auf Nanosilber in einer Reinkultur (Experiment 1) und in Töpfen mit Erde (Experiment 2).

In der Reinkultur: Effekte auf Keimung und Wachstum

Im Reinkultur-Experiment untersuchten die Forscher, wie sich Nanosilber in unterschiedlichen Formen und Mengen auf die Keimung und das Wachstum der Pflanzen auswirkte. Hierzu ließen sie Samen jeder Spezies entweder in reinem Wasser (Kontrolle) oder in einer Nanosilberlösung quellen und kultivierten diese dann in Petrischalen. Die Nanosilberlösung enthielt Silbernitrat (AgNO3), Polymer beschichtete (PVP-AgNPs) oder Gummi arabicum beschichtete Nanosilberpartikel (GAAgNP). Auch Konzentration der Lösung wurde variiert. Nach 20 Tagen verglichen die Forscher die Keimungsrate (Verhältnis der gekeimten Samen zur Gesamtzahl) sowie die Wurzel- und Sprosslänge der untersuchten Arten.

3 von 11 Arten keimten schlechter, wenn sie mit Gummi beschichteten Nanosilberpartikeln behandelt wurden. Demgegenüber verbesserte Silbernitrat die Keimungsrate von 5 der 11 Arten. Die Polymer beschichteten Partikel hatten keinen Einfluss auf die Keimung. Einige Pflanzen reagierten auf eine Silberbelastung mit einem reduzierten Blattwachstum. Nur eine Pflanze, Carex lurida, wuchs besser. Die drei Formen von Nanosilber riefen je nach Konzentration und Spezies zudem unterschiedliche Effekte hervor: So wuchs Carex lurida nur dann besonders gut, wenn sie entweder mit Polymer beschichteten Partikeln in hoher, Gummi beschichteten Partikel in niedriger oder Silbernitratpartikeln in mittlerer Konzentration behandelt wurde. Mit wenigen Ausnahmen hatten Pflanzen unter Silberbelastung auch deutlich kürzere Wurzeln als Pflanzen der Kontrollgruppe. Besonders groß war dieser Unterschied bei Pflanzen, die mit Gummi beschichteten Partikeln behandelt wurden. Zwei Arten hatte längere Wurzeln unter Silberbelastung – warum? Die Forscher vermuten, dass das Silber den Auxintransport in der Wurzel stört und damit zu einem unkontrollierten Wurzelwachstum führt. Die langen Wurzeln könnten jedoch auch auf eine spezielle Bewältigungsstrategie hinweisen, mit der einige Pflanzenspezies versuchen, einem kontaminiertem Umfeld auszuweichen.

Im Boden: Effekte auf das Wachstum

In einem zweiten Experiment säten die Forscher Samen von je 7 Arten in Töpfe mit homogenisierter Erde. Die Erde besprühten sie entweder mit den unterschiedlichen Silberpartikeln oder mit reinem Wasser. Nach 7 Wochen wurde die Blattbiomasse getrocknet und für jede Spezies gewogen.

Während die Nanopartikel im Boden die Keimung der meisten Arten nicht beeinflussten, zeigten sich deutliche Effekte auf das Wurzel- und Sprosswachstum: Pflanzen, die mit Gummi beschichteten Partikeln behandelt wurden, waren deutlich kleiner als alle anderen Pflanzengruppen – mit einer Ausnahme: das Italienische Weidelgras (Lolium multiflorum) wuchs besser.

Interaktion Pflanze – Nanopartikel

Unterschiedliche Pflanzenarten verkraften eine Silberbelastung also unterschiedlich gut. Abhängig ist diese Reaktion auch von der Partikelart und dem Entwicklungsstadium der Pflanze. Silbernitrat begünstigte die Keimung der Pflanzen in Petrischale und Boden, während die Polymer beschichteten Partikel kaum Effekte hatten. Die Gummi beschichteten Partikel jedoch wirkten sich sowohl auf die Keimung als auch auf das Wurzel- und Blattwachstum negativ aus. Frühere Studien haben gezeigt, dass beschichtete Nanopartikel im Vergleich zu gelöstem Silber in Silbernitrat pflanzliche Zellen schädigen können. Da die Gummi beschichteten Partikel (6 nm) deutlich kleiner sind als die Polymer beschichteten (21nm), können sie die wenige Nanometer großen Poren pflanzlicher Zellen einfacher überwinden – sie reichern sich leichter an und sind toxischer. Auch die Art der Partikelhülle und die Oberflächenspannung könnten die Toxizität beeinflussen. Das vorhandene Silber-Ion verbessert die Bioverfügbarkeit von Nanosilberpartikeln. Physikalisch-chemische Prozesse im Boden und auch Interaktionen mit anderen Pflanzen können diese Bioverfügbarkeit und damit die Anreicherung von Silberpartikeln in Pflanzen jedoch beeinflussen.

Die Wurzel ist das Tor zur Pflanze

Samen sind durch ihre Schale vor schädlichen Substanzen besser geschützt als die Wurzeln und Blätter eines Keimlings. Schädliche Stoffe im Boden erreichen zuerst die Wurzeln, sie werden daher auch schneller geschädigt. Silber wird vor allem in der Wurzel angereichert, der Transport in andere Pflanzengewebe ist gering. Dies könnte erklären, warum sich Nanosilber stärker auf das Wurzelwachstum auswirkt aus auf das Blattwachstum.

Strategie: Flucht oder Ertragen

Warum reagieren Pflanzen, die im selben Boden wachsen, so unterschiedlich auf Nanosilber? Die Forscher vermuten, dass Spezies unterschiedliche Strategien entwickelt haben, um auf hohe Silberkonzentrationen zu reagieren. Während einige Arten versuchen, dem kontaminierten Boden mit langen Wurzeln zu entkommen (Flucht-Strategie), müssten Arten ohne solche Strategien diesen Stress ertragen. Bisher kann aber noch kein klarer Zusammenhang zwischen der Taxonomie und der verfolgten Anpassungsstrategie ausgemacht werden. Die Studie liefert neue Erkenntnisse zum Transport und Verbleib von Nanopartikeln in Boden kultivierten Pflanzen, zu Wechselwirkungen zwischen Pflanze und Nanopartikel sowie zum Einfluss gemischter Pflanzengesellschaften auf die Toxizität von Nanopartikeln. Für die Forschung bleibt aber noch viel zu tun. Prinzipiell lässt sich daraus schließen, dass für technische Substanzen im Rahmen einer Risikobewertung überprüft werden, wie sich diese auf den Menschen und auf natürliche Systeme auswirken.
Quelle:

Yin, Liyan et al. (2012): Effects of Silver Nanoparticle Exposure on Germination and Early Growth of Eleven Wetland Plants. PLoS ONE 7(10): e47674. doi:10.1371/journal.pone.0047674.

Yin, Liyan et al. | Pflanzenforschung.de
Weitere Informationen:
http://www.Pflanzenforschung.de

Weitere Nachrichten aus der Kategorie Ökologie Umwelt- Naturschutz:

nachricht Savannen dominieren die Schwankungen der Landvegetation als Kohlenstoffsenke
22.05.2015 | Max-Planck-Institut für Biogeochemie

nachricht Auf der Spur der kleinsten Teilchen
20.05.2015 | Universität Siegen

Alle Nachrichten aus der Kategorie: Ökologie Umwelt- Naturschutz >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kieler Forschende bauen die kleinsten Maschinen der Welt

Die DFG stellt Millionenförderung für die Entwicklung neuartiger Medikamente und Materialien an der Christian-Albrechts-Universität zu Kiel (CAU) bereit.

Großer Jubel an der Christian-Albrechts-Universität zu Kiel (CAU): Wie die Deutsche Forschungsgemeinschaft (DFG) heute (Donnerstag, 21. Mai) bekannt gab,...

Im Focus: Basler Physiker entwickeln Methode zur effizienten Signalübertragung aus Nanobauteilen

Physiker haben eine innovative Methode entwickelt, die den effizienten Einsatz von Nanobauteilen in elektronische Schaltkreisen ermöglichen könnte. Sie entwickelten dazu eine Anordnung, bei der ein Nanobauteil mit zwei elektrischen Leitern verbunden ist. Diese bewirken eine hocheffiziente Auskopplung des elektrischen Signals. Die Wissenschaftler vom Departement Physik und dem Swiss Nanoscience Institute der Universität Basel haben ihre Ergebnisse zusammen mit Kollegen der ETH Zürich in der Fachzeitschrift «Nature Communications» publiziert.

Elektronische Bauteile werden immer kleiner. In Forschungslabors werden bereits Bauelemente von wenigen Nanometern hergestellt, was ungefähr der Grösse von...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: Phagen übertragen Antibiotikaresistenzen auf Bakterien – Nachweis auf Geflügelfleisch

Bakterien entwickeln immer häufiger Resistenzen gegenüber Antibiotika. Es gibt unterschiedliche Erklärungen dafür, wie diese Resistenzen in die Bakterien gelangen. Forschende der Vetmeduni Vienna fanden sogenannte Phagen auf Geflügelfleisch, die Antibiotikaresistenzen auf Bakterien übertragen können. Phagen sind Viren, die ausschließlich Bakterien infizieren können. Für Menschen sind sie unschädlich. Phagen könnten laut Studie jedoch zur Verbreitung von Antibiotikaresistenzen beitragen. Die Erkenntnisse sind nicht nur für die Lebensmittelproduktion sondern auch für die Medizin von Bedeutung. Die Studie wurde in der Fachzeitschrift Applied and Environmental Microbiology veröffentlicht.

Antibiotikaresistente Bakterien stellen weltweit ein bedeutendes Gesundheitsrisiko dar. Gängige Antibiotika sind bei der Behandlung von Infektionskrankheiten...

Im Focus: Die schreckliche Schönheit der Medusa

Astronomen haben mit dem Very Large Telescope der ESO in Chile das bisher detailgetreueste Bild vom Medusa-Nebel eingefangen, das je aufgenommen wurde. Als der Stern im Herzen dieses Nebels altersschwach wurde, hat er seine äußeren Schichten abgestoßen, aus denen sich diese farbenfrohe Wolke bildete. Das Bild lässt erahnen, welches endgültige Schicksal die Sonne einmal ereilen wird: Irgendwann wird aus ihr ebenfalls ein Objekt dieser Art werden.

Dieser wunderschöne Planetarische Nebel ist nach einer schrecklichen Kreatur aus der griechischen Mythologie benannt – der Gorgone Medusa. Er trägt auch die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

TU Darmstadt: Gipfel der Verschlüsselung - CROSSING-Konferenz am 1. und 2. Juni in Darmstadt

22.05.2015 | Veranstaltungen

Internationale neurowissenschaftliche Tagung

22.05.2015 | Veranstaltungen

Biokohle-Forscher tagen in Potsdam

21.05.2015 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nanogefäß mit einer Perle aus Gold

22.05.2015 | Biowissenschaften Chemie

Ferngesteuerte Mikroschwimmer: Jülicher Physiker simulieren Bewegungen von Bakterien an Oberflächen

22.05.2015 | Physik Astronomie

Was Chromosomen im Innersten zusammenhält

22.05.2015 | Biowissenschaften Chemie