Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Ostsee der Zukunft im Miniformat

12.08.2011
Kieler Meeresforscher untersuchen Folgen des Klimawandels mit neuer Versuchsanlage

Mit Hilfe von sechs großen Versuchstanks erforschen Wissenschaftler des Kieler Leibniz-Instituts für Meereswissenschaften (IFM-GEOMAR), wie sich das Leben am Boden der Ostsee in den kommenden Jahrzehnten entwickelt. In den so genannten „Benthokosmen“ simulieren sie Umweltbedingungen, die sie für die Zukunft erwarten. Ziel der Forscher ist es, mögliche strukturelle und funktionale Verschiebungen in den Lebensgemeinschaften zu erfassen und deren Konsequenzen abzuschätzen.

Klimawandel – bei diesem Begriff denken die meisten Menschen an höhere Temperaturen, den Meeresspiegelanstieg oder stärkere Stürme. Doch auch die Lebewelt am Meeresboden wird sich in den kommenden Jahrzehnten verändern. Forscher des Kieler Leibniz-Instituts für Meereswissenschaften (IFM-GEOMAR) ermitteln mit Hilfe einer neuen Experimentieranlage, wie sich der Klimawandel auf die Organismen am Boden der Ostsee auswirkt.

Dafür wurden auf einem Ponton vor dem Kieler Aquarium sechs große Kunststoff-Bassins installiert, die über eine komplexe Mess- und Steuerelektronik verfügen. Jetzt beginnen die Forschungsarbeiten in den neuen „Benthokosmen“: Ein Team um den Ökologen Prof. Dr. Martin Wahl richtet darin verschiedene Lebensgemeinschaften ein und setzt diese steigenden Temperaturen, erhöhten Kohlendioxid-Werten, einer wachsenden Menge an Nährstoffen, sinkenden Sauerstoff-Mengen, abnehmenden Lichtmengen oder anderen ökologischen Veränderungen aus, welche die Forscher für die kommenden Jahrzehnte annehmen. „Wir interessieren uns für das Benthos, also die Tiere und Pflanzen am Boden der Ostsee“, erklärt Wahl. „Mit Hilfe unserer Experimente möchten wir herausfinden, wie diese Lebewesen auf den Klimawandel reagieren, ob sie sich anpassen können, wie sich die Zusammensetzung der Arten neu organisiert und ob sich damit die Funktionen und Dienste der Lebensgemeinschaft ändern.“

Für ihren ersten Versuchsaufbau sammeln die Wissenschaftler heimische und eingewanderte Organismen aus der Kieler Bucht, etwa den Blasentang Fucus vesiculosus und die eingewanderte Rotalge Gracilaria vermiculophylla, die Miesmuschel Mytilus edulis und die Meerassel Idotea baltica. „Diese Arten prägen das Ökosystem vor unserer Haustür. Sie machen einen substantiellen Anteil der Biomasseproduktion aus, tragen wesentlich zur Wasserqualität bei, und bieten einen Lebensraum und Nahrung für zahlreiche andere Arten. Ihre Reaktionen auf den Klimawandel könnten darum eine regelrechte Kettenreaktion mit Konsequenzen für die Belüftung des Wassers, die Stabilität der Küste oder den Fischbestand auslösen“, so Prof. Wahl. „Wir vermuten aber, dass die Arten der Ostsee, die ein sehr junges und variables Meer ist, resistenter gegen die Veränderungen sind als ähnlich wichtige Lebewesen zum Beispiel im östlichen Mittelmeer.“

Um diesen Vergleich zu ermöglichen, haben die Kieler zusammen mit israelischen Forschern in Haifa die Finanzierung einer baugleichen Experimentieranlage beantragt, in welcher ebenfalls die Auswirkungen des Klimawandels auf Lebensgemeinschaften untersucht werden sollen. Wahl: „Durch die Kooperation mit dem National Institute of Oceanography (NIO) ergibt sich eine Reihe interessanter Gegenüberstellungen. Zwar sind beide Meere durch ihre Randlage und den begrenzten Wasseraustausch mit den Weltozeanen gekennzeichnet. Das Mittelmeer verfügt aber über eine größere Artenvielfalt und eine größeren Anzahl an endemischen Arten, die nur in dieser Region existieren. In dem warmen, salzreichen und nährstoffarmen Wasser leben sie bereits hart am Limit – außerdem gibt es dort weitaus weniger Temperaturschwankungen als in der Ostsee. Veränderungen wird das Ökosystem an der israelischen Küste daher vielleicht schwerer verkraften können.“

Gleichzeitig mit der Kieler Experimentieranlage wird ein Infobereich im Internet eingerichtet, in dem Interessierte die aktuellen Messergebnisse ablesen und per Kamera einen Blick in die Tanks werfen können. Für die energetische Grundversorgung rüsten die Forscher ihre Anlage mit einem Solarpanel und einem kleinen Windrad aus, um bei ihrer Erforschung der Klimawandels möglichst schonend mit den Ressourcen umzugehen.

Hintergrundinformationen:
Anzahl der Benthokosmen: 6
Anzahl der Versuchskammern: 12
Volumen der Benthokosmen: 3 Kubikmeter
Kontrollierbare Parameter: Lichteinstrahlung, Temperatur, Strömung, pH-Wert,
Salzgehalt, Kohlendioxidgehalt, Nährstoffgehalt
Anzahl der Kameras: 8
Gesamtkosten der Anlage: 350.000 Euro (finanziert durch IFM-GEOMAR)
Die Solaranlage wurde von der Firma Sun Nord Neue Energien GmbH, Kiel, zu ermäßigtem Preis, das Windrad von der Firma AIE – Alternative und Innovative Energieberatungen GmbH, Cuxhaven, kostenfrei zur Verfügung gestellt.

Andreas Villwock | idw
Weitere Informationen:
http://www.ifm-geomar.de/567

Weitere Nachrichten aus der Kategorie Ökologie Umwelt- Naturschutz:

nachricht Von der Weser bis zur Nordsee: PLAWES erforscht Mikroplastik-Kontaminationen in Ökosystemen
20.09.2017 | Universität Bayreuth

nachricht Der Monsun und die Treibhausgase
18.09.2017 | Forschungszentrum Jülich

Alle Nachrichten aus der Kategorie: Ökologie Umwelt- Naturschutz >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste lichtgetriebene Stromquelle der Welt

Die Stromregelung ist eine der wichtigsten Komponenten moderner Elektronik, denn über schnell angesteuerte Elektronenströme werden Daten und Signale übertragen. Die Ansprüche an die Schnelligkeit der Datenübertragung wachsen dabei beständig. In eine ganz neue Dimension der schnellen Stromregelung sind nun Wissenschaftler der Lehrstühle für Laserphysik und Angewandte Physik an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) vorgedrungen. Ihnen ist es gelungen, im „Wundermaterial“ Graphen Elektronenströme innerhalb von einer Femtosekunde in die gewünschte Richtung zu lenken – eine Femtosekunde entspricht dabei dem millionsten Teil einer milliardstel Sekunde.

Der Trick: die Elektronen werden von einer einzigen Schwingung eines Lichtpulses angetrieben. Damit können sie den Vorgang um mehr als das Tausendfache im...

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bakterielle Nano-Harpune funktioniert wie Power-Bohrer

26.09.2017 | Biowissenschaften Chemie

eTRANSAFE – ein Forschungsprojekt für mehr Sicherheit bei der Arzneimittelentwicklung

26.09.2017 | Biowissenschaften Chemie

Die schnellste lichtgetriebene Stromquelle der Welt

26.09.2017 | Physik Astronomie