Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Müllhalde Meer

16.04.2012
Biologen erstellen Leitfaden für eine genauere Untersuchung der Meeresverschmutzung durch Mikroplastikpartikel

Große Mengen der weltweit produzierten Kunststoffe enden in den Ozeanen. Dort stellen sie eine zunehmende Bedrohung dar. Vor allem sehr kleine Objekte, sogenannte Mikroplastikpartikel, gefährden das Leben vieler Meeresbewohner.


Sammlung kleiner Plastikreste
© Stefanie Meyer, Alfred-Wegener-Institut

Eine Einschätzung, wie stark die Ozeane mit Mikroplastikpartikeln belastet sind, scheiterte bisher, weil weltweit vergleichbare Untersuchungsmethoden und Daten fehlen. Gemeinsam mit britischen und chilenischen Kollegen haben Wissenschaftler des Alfred-Wegener-Institutes für Polar- und Meeresforschung in der Helmholtz-Gemeinschaft nun alle veröffentlichten Studien zu diesem Thema ausgewertet und standardisierte Richtlinien für die Erfassung und Charakterisierung der Mikroplastik-Partikel im Meer vorgeschlagen.

Angespülte Plastikflaschen gehören heutzutage ebenso zu einem Strandspaziergang wie das Kreischen der Möwen. Was dem menschlichen Auge jedoch verborgen bleibt, sind die unzähligen Kleinstobjekte aus Kunststoff, die im Wasser schwimmen, an den Strand gespült werden oder den Meeresboden bedecken. Wissenschaftler bezeichnen diese Plastikteilchen als „Mikroplastikpartikel“ und verstehen darunter Kunststoffobjekte, deren Durchmesser weniger als fünf Millimeter betragen – wobei die meisten Mikroplastikpartikel kleiner als ein Sandkorn oder eine Nadelspitze sind. Diese Eigenschaft macht sie auch so gefährlich für Meeresbewohner.

"Mikroplastikpartikel werden von Organismen verschluckt und über den Verdauungstrakt aufgenommen. So konnten sie zum Beispiel bereits im Gewebe von Miesmuscheln oder anderen Tieren nachgewiesen werden“, sagt Dr. Lars Gutow, Biologe am Alfred-Wegener-Institut für Polar- und Meeresforschung in der Helmholtz-Gemeinschaft. Im Meer lagern sich an den kleinen Partikeln zudem toxische Stoffe an, die auf diese Weise in die Nahrungskette gelangen und so schließlich auch dem Menschen gefährlich werden können.

Lars Gutow und Kollegen von der Universidad Católica del Norte in Chile und der School of Marine Science and Engineering in Plymouth sind nun gemeinsam der Frage nachgegangen, wie stark die Weltmeere mit Mikroplastikpartikeln belastet sind. Dazu haben die Biologen 68 wissenschaftliche Veröffentlichungen zu diesem Thema analysiert und festgestellt, dass sich deren Ergebnisse nur schwer miteinander vergleichen lassen. „In diesen Studien wurde mit ganz unterschiedlichen Methoden gearbeitet, weshalb nicht nachvollziehbar war, ob die beobachteten regionalen Verteilungsunterschiede der Plastikpartikel real sind oder ob sie auf die Erfassungsmethoden zurückzuführen sind“, sagt Prof. Martin Thiel, Initiator der nun veröffentlichten Vergleichsuntersuchung und Wissenschaftler an der Universidad Católica del Norte. So habe sich unter anderem gezeigt, dass 100.000-mal mehr Mikroplastikpartikel aus der Wassersäule gefischt werden konnten, wenn anstelle eines Netzes mit Maschenweite 450 Mikrometer ein Modell mit 85 Mikrometern eingesetzt wurde.

Basierend auf diesen Erkenntnissen hat das internationale Forscherteam nun erstmals Richtlinien für die Erfassung und Charakterisierung der Mikroplastikpartikel erstellt und diese im Fachmagazin Environmental Science & Technology veröffentlicht. Darin erläutern die Wissenschaftler auch mögliche Herkunftsquellen des Plastikabfalls. „Mikroplastikpartikel gelangen auf unterschiedlichen Wegen in die Meere. Ein Großteil sind sogenannte Plastikpellets, die als Rohstoff für die Herstellung von Kunststoffprodukten wie Computergehäusen oder andere Gebrauchsartikeln dienen. Geht man mit diesen Pellets, beispielsweise beim Verladen auf Schiffe, sorglos um, können viele davon durch den Wind verweht werden und ins Meer gelangen“, erklärt Lars Gutow.

Mikroplastikpartikel stecken aber auch in Kosmetik- und Reinigungsmittel. „In so manchem Peeling-Produkt werden kleinste Plastikpartikel als ‚Scheuermittel’ verwendet. Über das Abwasser und die Flüsse gelangen sie dann ins Meer“, sagt der Biologe. Und schließlich zerfalle jede Plastikflasche, jede Plastiktüte, die im Meer schwimme, eines Tages in zahllose Mikropartikel. „Der Abbau größerer Plastikteile kann Jahrhunderte dauern und erfolgt vor allem durch physikalische Prozesse. Die UV-Strahlung der Sonne lässt den Kunststoff brüchig werden. Durch den Wellenschlag und Abriebprozesse werden sie dann in immer kleinere Teile zerbrochen“, so Lars Gutow.

Die kleinsten bisher nachgewiesenen Partikel besaßen einen Durchmesser von einem Mikrometer - das entspricht einem tausendstel Millimeter. Um solch winzige Kunststoffobjekte genau zu bestimmen und ihre Herkunft zu klären, sind aufwendige Untersuchungen nötig. „Wir empfehlen jedem Wissenschaftler, sehr kleine Mikroplastikpartikel mithilfe einer Infrarot-Spektroskopie zu analysieren. Dieses Verfahren entlarvt die Inhaltsstoffe und ermöglicht so eine genaue Identifizierung als Kunststoff“, sagt Lars Gutow.

In ihrem Forschungsleitfaden weisen die Wissenschaftler zudem auf Wissenslücken hin. „Das Thema ‚Plastik im Meer’ hat in den vergangenen Jahren deutlich an Bedeutung gewonnen. Es wird sehr viel geforscht. Trotzdem wissen wir zum Beispiel noch nicht, ob und wenn ja, in welcher Menge Mikroplastikpartikel an Felsküsten und in Salzwiesen abgelagert werden. Vor allem letztere sind bekannt dafür, dass sie ein hohes Rückhaltepotenzial für Partikel ausweisen. Ob dies auch für Mikroplastikpartikel gilt, ist bisher nicht bekannt“, sagt Martin Thiel, der die Belastung der chilenischen Küste durch Mikroplastikpartikel untersucht.

Wenn zukünftig, basierend auf den Empfehlungen dieser Vergleichsstudie, alle Meeresforscher standardisierte Methoden zur Erfassung der Mikroplastikpartikel anwenden, dürfte nicht nur die Aussagekraft ihrer Ergebnisse deutlich steigen. Es bestünde zudem die Chance, realistische Aussagen darüber zu machen, wo und wie stark die Weltmeere wirklich mit Mikroplastikpartikeln belastet sind und welche Konsequenzen diese Verschmutzung für die Ökosysteme und somit auch für den Menschen hat.

Der Titel der Originalveröffentlichung lautet:
Hidalgo-Ruz, Valeria / Gutow, Lars / Thompson, Richard C. / Thiel, Martin (2012): Microplastics in the Marine Environment: A Review of the Methods Used for Identification and Quantification, Environmental Science & Technology, 46, 3060-3075, dx.doi.org/10.1021/es2031505

Ihr Ansprechpartner im Alfred-Wegener-Institut ist Dr. Lars Gutow (Tel.: 0471 – 4831 –1708; E-Mail: Lars.Gutow@awi.de). Prof. Dr. Martin Thiel ist erreichbar an der Universidad Católica del Norte in Coquimbo, Chile (Tel. +56 51 209939; E-Mail: thiel@ucn.cl). Ihre Ansprechpartnerin in der Abteilung Kommunikation und Medien ist Sina Löschke (Tel.: 0471 4831-2008; E-Mail: Sina.Loeschke@awi.de).

Das Alfred-Wegener-Institut forscht in der Arktis, Antarktis und den Ozeanen der mittleren sowie hohen Breiten. Es koordiniert die Polarforschung in Deutschland und stellt wichtige Infrastruktur wie den Forschungseisbrecher Polarstern und Stationen in der Arktis und Antarktis für die internationale Wissenschaft zur Verfügung. Das Alfred-Wegener-Institut ist eines der 18 Forschungszentren der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands.

Ralf Röchert | idw
Weitere Informationen:
http://www.awi.de

Weitere Nachrichten aus der Kategorie Ökologie Umwelt- Naturschutz:

nachricht Hochmodernes Forschungsflugzeug fliegt zurzeit über Europa
17.07.2017 | Universität Bremen

nachricht Baumgrenze wird nicht allein durch das Klima bestimmt
03.07.2017 | Senckenberg Forschungsinstitut und Naturmuseen

Alle Nachrichten aus der Kategorie: Ökologie Umwelt- Naturschutz >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ruckartige Bewegung schärft Röntgenpulse

Spektral breite Röntgenpulse lassen sich rein mechanisch „zuspitzen“. Das klingt überraschend, aber ein Team aus theoretischen und Experimentalphysikern hat dafür eine Methode entwickelt und realisiert. Sie verwendet präzise mit den Pulsen synchronisierte schnelle Bewegungen einer mit dem Röntgenlicht wechselwirkenden Probe. Dadurch gelingt es, Photonen innerhalb des Röntgenpulses so zu verschieben, dass sich diese im gewünschten Bereich konzentrieren.

Wie macht man aus einem flachen Hügel einen steilen und hohen Berg? Man gräbt an den Seiten Material ab und schüttet es oben auf. So etwa kann man sich die...

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physiker designen ultrascharfe Pulse

Quantenphysiker um Oriol Romero-Isart haben einen einfachen Aufbau entworfen, mit dem theoretisch beliebig stark fokussierte elektromagnetische Felder erzeugt werden können. Anwendung finden könnte das neue Verfahren zum Beispiel in der Mikroskopie oder für besonders empfindliche Sensoren.

Mikrowellen, Wärmestrahlung, Licht und Röntgenstrahlung sind Beispiele für elektromagnetische Wellen. Für viele Anwendungen ist es notwendig, diese Strahlung...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Ferienkurs mit rund 600 Teilnehmern aus aller Welt

28.07.2017 | Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Firmen räumen bei der IT, Mobilgeräten und Firmen-Hardware am liebsten in der Urlaubsphase auf

28.07.2017 | Unternehmensmeldung

Dunkel war’s, der Mond schien helle: Nachthimmel oft heller als gedacht

28.07.2017 | Geowissenschaften

8,2 Millionen Euro für den Kampf gegen Leukämie

28.07.2017 | Förderungen Preise