Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Müllhalde Meer

16.04.2012
Biologen erstellen Leitfaden für eine genauere Untersuchung der Meeresverschmutzung durch Mikroplastikpartikel

Große Mengen der weltweit produzierten Kunststoffe enden in den Ozeanen. Dort stellen sie eine zunehmende Bedrohung dar. Vor allem sehr kleine Objekte, sogenannte Mikroplastikpartikel, gefährden das Leben vieler Meeresbewohner.


Sammlung kleiner Plastikreste
© Stefanie Meyer, Alfred-Wegener-Institut

Eine Einschätzung, wie stark die Ozeane mit Mikroplastikpartikeln belastet sind, scheiterte bisher, weil weltweit vergleichbare Untersuchungsmethoden und Daten fehlen. Gemeinsam mit britischen und chilenischen Kollegen haben Wissenschaftler des Alfred-Wegener-Institutes für Polar- und Meeresforschung in der Helmholtz-Gemeinschaft nun alle veröffentlichten Studien zu diesem Thema ausgewertet und standardisierte Richtlinien für die Erfassung und Charakterisierung der Mikroplastik-Partikel im Meer vorgeschlagen.

Angespülte Plastikflaschen gehören heutzutage ebenso zu einem Strandspaziergang wie das Kreischen der Möwen. Was dem menschlichen Auge jedoch verborgen bleibt, sind die unzähligen Kleinstobjekte aus Kunststoff, die im Wasser schwimmen, an den Strand gespült werden oder den Meeresboden bedecken. Wissenschaftler bezeichnen diese Plastikteilchen als „Mikroplastikpartikel“ und verstehen darunter Kunststoffobjekte, deren Durchmesser weniger als fünf Millimeter betragen – wobei die meisten Mikroplastikpartikel kleiner als ein Sandkorn oder eine Nadelspitze sind. Diese Eigenschaft macht sie auch so gefährlich für Meeresbewohner.

"Mikroplastikpartikel werden von Organismen verschluckt und über den Verdauungstrakt aufgenommen. So konnten sie zum Beispiel bereits im Gewebe von Miesmuscheln oder anderen Tieren nachgewiesen werden“, sagt Dr. Lars Gutow, Biologe am Alfred-Wegener-Institut für Polar- und Meeresforschung in der Helmholtz-Gemeinschaft. Im Meer lagern sich an den kleinen Partikeln zudem toxische Stoffe an, die auf diese Weise in die Nahrungskette gelangen und so schließlich auch dem Menschen gefährlich werden können.

Lars Gutow und Kollegen von der Universidad Católica del Norte in Chile und der School of Marine Science and Engineering in Plymouth sind nun gemeinsam der Frage nachgegangen, wie stark die Weltmeere mit Mikroplastikpartikeln belastet sind. Dazu haben die Biologen 68 wissenschaftliche Veröffentlichungen zu diesem Thema analysiert und festgestellt, dass sich deren Ergebnisse nur schwer miteinander vergleichen lassen. „In diesen Studien wurde mit ganz unterschiedlichen Methoden gearbeitet, weshalb nicht nachvollziehbar war, ob die beobachteten regionalen Verteilungsunterschiede der Plastikpartikel real sind oder ob sie auf die Erfassungsmethoden zurückzuführen sind“, sagt Prof. Martin Thiel, Initiator der nun veröffentlichten Vergleichsuntersuchung und Wissenschaftler an der Universidad Católica del Norte. So habe sich unter anderem gezeigt, dass 100.000-mal mehr Mikroplastikpartikel aus der Wassersäule gefischt werden konnten, wenn anstelle eines Netzes mit Maschenweite 450 Mikrometer ein Modell mit 85 Mikrometern eingesetzt wurde.

Basierend auf diesen Erkenntnissen hat das internationale Forscherteam nun erstmals Richtlinien für die Erfassung und Charakterisierung der Mikroplastikpartikel erstellt und diese im Fachmagazin Environmental Science & Technology veröffentlicht. Darin erläutern die Wissenschaftler auch mögliche Herkunftsquellen des Plastikabfalls. „Mikroplastikpartikel gelangen auf unterschiedlichen Wegen in die Meere. Ein Großteil sind sogenannte Plastikpellets, die als Rohstoff für die Herstellung von Kunststoffprodukten wie Computergehäusen oder andere Gebrauchsartikeln dienen. Geht man mit diesen Pellets, beispielsweise beim Verladen auf Schiffe, sorglos um, können viele davon durch den Wind verweht werden und ins Meer gelangen“, erklärt Lars Gutow.

Mikroplastikpartikel stecken aber auch in Kosmetik- und Reinigungsmittel. „In so manchem Peeling-Produkt werden kleinste Plastikpartikel als ‚Scheuermittel’ verwendet. Über das Abwasser und die Flüsse gelangen sie dann ins Meer“, sagt der Biologe. Und schließlich zerfalle jede Plastikflasche, jede Plastiktüte, die im Meer schwimme, eines Tages in zahllose Mikropartikel. „Der Abbau größerer Plastikteile kann Jahrhunderte dauern und erfolgt vor allem durch physikalische Prozesse. Die UV-Strahlung der Sonne lässt den Kunststoff brüchig werden. Durch den Wellenschlag und Abriebprozesse werden sie dann in immer kleinere Teile zerbrochen“, so Lars Gutow.

Die kleinsten bisher nachgewiesenen Partikel besaßen einen Durchmesser von einem Mikrometer - das entspricht einem tausendstel Millimeter. Um solch winzige Kunststoffobjekte genau zu bestimmen und ihre Herkunft zu klären, sind aufwendige Untersuchungen nötig. „Wir empfehlen jedem Wissenschaftler, sehr kleine Mikroplastikpartikel mithilfe einer Infrarot-Spektroskopie zu analysieren. Dieses Verfahren entlarvt die Inhaltsstoffe und ermöglicht so eine genaue Identifizierung als Kunststoff“, sagt Lars Gutow.

In ihrem Forschungsleitfaden weisen die Wissenschaftler zudem auf Wissenslücken hin. „Das Thema ‚Plastik im Meer’ hat in den vergangenen Jahren deutlich an Bedeutung gewonnen. Es wird sehr viel geforscht. Trotzdem wissen wir zum Beispiel noch nicht, ob und wenn ja, in welcher Menge Mikroplastikpartikel an Felsküsten und in Salzwiesen abgelagert werden. Vor allem letztere sind bekannt dafür, dass sie ein hohes Rückhaltepotenzial für Partikel ausweisen. Ob dies auch für Mikroplastikpartikel gilt, ist bisher nicht bekannt“, sagt Martin Thiel, der die Belastung der chilenischen Küste durch Mikroplastikpartikel untersucht.

Wenn zukünftig, basierend auf den Empfehlungen dieser Vergleichsstudie, alle Meeresforscher standardisierte Methoden zur Erfassung der Mikroplastikpartikel anwenden, dürfte nicht nur die Aussagekraft ihrer Ergebnisse deutlich steigen. Es bestünde zudem die Chance, realistische Aussagen darüber zu machen, wo und wie stark die Weltmeere wirklich mit Mikroplastikpartikeln belastet sind und welche Konsequenzen diese Verschmutzung für die Ökosysteme und somit auch für den Menschen hat.

Der Titel der Originalveröffentlichung lautet:
Hidalgo-Ruz, Valeria / Gutow, Lars / Thompson, Richard C. / Thiel, Martin (2012): Microplastics in the Marine Environment: A Review of the Methods Used for Identification and Quantification, Environmental Science & Technology, 46, 3060-3075, dx.doi.org/10.1021/es2031505

Ihr Ansprechpartner im Alfred-Wegener-Institut ist Dr. Lars Gutow (Tel.: 0471 – 4831 –1708; E-Mail: Lars.Gutow@awi.de). Prof. Dr. Martin Thiel ist erreichbar an der Universidad Católica del Norte in Coquimbo, Chile (Tel. +56 51 209939; E-Mail: thiel@ucn.cl). Ihre Ansprechpartnerin in der Abteilung Kommunikation und Medien ist Sina Löschke (Tel.: 0471 4831-2008; E-Mail: Sina.Loeschke@awi.de).

Das Alfred-Wegener-Institut forscht in der Arktis, Antarktis und den Ozeanen der mittleren sowie hohen Breiten. Es koordiniert die Polarforschung in Deutschland und stellt wichtige Infrastruktur wie den Forschungseisbrecher Polarstern und Stationen in der Arktis und Antarktis für die internationale Wissenschaft zur Verfügung. Das Alfred-Wegener-Institut ist eines der 18 Forschungszentren der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands.

Ralf Röchert | idw
Weitere Informationen:
http://www.awi.de

Weitere Nachrichten aus der Kategorie Ökologie Umwelt- Naturschutz:

nachricht Wie gefährlich ist Reifenabrieb?
19.02.2018 | Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

nachricht Verbreitung von Fischeiern durch Wasservögel – nur ein Mythos?
19.02.2018 | Universität Basel

Alle Nachrichten aus der Kategorie: Ökologie Umwelt- Naturschutz >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aachener Optiktage: Expertenwissen in zwei Konferenzen für die Glas- und Kunststoffoptikfertigung

19.02.2018 | Veranstaltungen

Konferenz "Die Mobilität von morgen gestalten"

19.02.2018 | Veranstaltungen

Von Bitcoins bis zur Genomchirurgie

19.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Markierung für Krebsstammzellen

20.02.2018 | Biowissenschaften Chemie

Da haben wir den Salat: Erste Ernte aus aufbereitetem Abwasser im Forschungsprojekt HypoWave

20.02.2018 | Agrar- Forstwissenschaften

Die Brücke, die sich dehnen kann

20.02.2018 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics