Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie lange strahlt das Selen im Atommüll?

06.09.2010
PTB-Wissenschaftler bestimmen Halbwertszeit von Selen-79 genauer

Um die Sicherheit eines Endlagers für nukleare Abfälle abschätzen zu können, ist es wichtig, die Halbwertszeiten der radioaktiven Bestandteile des Atommülls möglichst genau zu kennen.

Die Halbwertszeit gibt die Zeitspanne an, nach der die Menge eines radioaktiven Elements auf die Hälfte gesunken und in andere Atome zerfallen ist. Diese Zeitspanne kann je nach der Zusammensetzung des nuklearen Abfalls Jahrzehnte oder auch Jahrmillionen betragen.

Eines der Nuklide, die in schwach- und mittelaktiven Abfällen vorkommen, ist das Isotop Selen-79. Bisherige Bestimmungen seiner Halbwertszeit variierten stark zwischen 124 000 Jahren und 1 130 000 Jahren. Um eine genauere Aussage darüber treffen zu können, wie lange nuklearer Abfall, der dieses Isotop enthält, voraussichtlich strahlt, haben sich Forscher verschiedener Institute zusammengeschlossen: Wissenschaftler der Physikalisch-Technischen Bundesanstalt (PTB) in Braunschweig, des Lehrstuhls für Radiochemie der TU München, des Instituts für Transurane in Karlsruhe und des Paul-Scherrer Instituts in Villingen (Schweiz) haben die Halbwertszeit von Selen-79 nun mit deutlich verbesserter Messunsicherheit neu bestimmt. Sie ermittelten eine Halbwertszeit von 327 000 Jahren, und zwar mit einer deutlich geringeren Messunsicherheit als bei den früheren Messungen.

Das radioaktive Isotop Selen-79 ist ein Betastrahler und zerfällt unter Emission von Elektronen zu Brom-79. Eine große Herausforderung bei der Bestimmung der Halbwertszeit war, Verunreinigungen durch andere radioaktive Stoffe in der Probe möglichst gering zu halten. Denn das Ausgangmaterial für die Untersuchung war eine hochradioaktive Spaltproduktlösung aus abgebranntem Kernbrennstoff, die nur eine geringe Menge an Selen-79 enthielt. Zur Trennung wurde unter anderem der Reinsch-Test angewandt, der ursprünglich in der Forensik zum Nachweis von Selen, Arsen oder auch Quecksilber entwickelt wurde und bisher in radiochemischen Analysen kaum Verwendung fand. Auf diese Weise gelang es den Wissenschaftlern, eine Selen-79-Lösung mit sehr hoher radiochemischer Reinheit zu erhalten.

Anhand dieser Lösung wurde die Halbwertszeit über die Anzahl der Selen-79-Kerne und ihre Aktivität bestimmt. Diese wurde in der PTB mit Hilfe der Flüssigszintillationszählung gemessen. Die radioaktive Strahlung löst dabei in einem sogenannten Szintillator Lichtblitze aus, die mit empfindlichen Detektoren gezählt werden können. Die Vorteile dieser Methode sind, dass auch geringe Aktivitäten gut bestimmt und kleine Messunsicherheiten erreicht werden können. Das Ergebnis liegt mit einer Halbwertszeit von 327 000 Jahren deutlich unter dem bisher gemessenen Höchstwert von 1 130 000 Jahren. Die Messunsicherheit wurde mit einem Wert von 8 000 Jahren gegenüber früheren Ergebnissen deutlich verbessert.

Selen-79 ist damit eines von zahlreichen langlebigen Radionukliden, deren Halbwertszeiten in den letzten Jahren in der PTB genauer gemessen werden konnten. Erst kürzlich gelang die bisher genauste Bestimmung der Halbwertszeit von Beryllium-10, das für die Erforschung der Klimahistorie genutzt wird. Auch die für Geochronologen wichtigen „Uhren“ Kalium-40, Rubidium-87 und Samarium-147 konnten die PTB-Forscher genauer stellen: Anhand der Halbwertszeiten dieser Isotope kann die Entstehungszeit von Gesteinen und Sedimenten berechnet werden, um Aussagen über wichtige Ereignisse der Erdgeschichte zu treffen. Die Halbwertszeiten dieser Isotope betragen bis zu 107 Milliarden Jahren.

Originalveröffentlichung
Jörg, G.; Bühnemann, R.; Hollas, S.; Kivel, N.; Kossert, K.; Van Wickel, S.; Lierse v. Gostomski, Ch.: Preparation of radiochemically pure 79Se and highly precise determination of its half-life. Applied Radiation and Isotopes. Im Druck.
Ansprechpartner
Dr. Karsten Kossert, PTB-Arbeitsgruppe 6.11 Aktivitätseinheit,
Tel.: (0531) 592-6110 , E-Mail: karsten.kossert@ptb.de

Erika Schow | idw
Weitere Informationen:
http://www.ptb.de

Weitere Nachrichten aus der Kategorie Ökologie Umwelt- Naturschutz:

nachricht Wie Brände die Tundra langfristig verändern
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Mit Drohnen Wildschweinschäden schätzen
12.12.2017 | Gesellschaft für Ökologie e.V.

Alle Nachrichten aus der Kategorie: Ökologie Umwelt- Naturschutz >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mit Quantenmechanik zu neuen Solarzellen: Forschungspreis für Bayreuther Physikerin

12.12.2017 | Förderungen Preise

Stottern: Stoppsignale im Gehirn verhindern flüssiges Sprechen

12.12.2017 | Biowissenschaften Chemie

E-Mobilität: Neues Hybridspeicherkonzept soll Reichweite und Leistung erhöhen

12.12.2017 | Energie und Elektrotechnik