Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Küstengewässer produzieren in großem Ausmaß ozonschädliche Halogenverbindungen

01.02.2012
Ergebnisse einer internationalen Feldmesskampagne unter Koordination von Heidelberger Umweltphysikern

Die Küstenbereiche des tropischen Westpazifik produzieren in großem Ausmaß natürliche Halogenverbindungen, die die Ozonschicht schädigen können. Das zeigen erste Ergebnisse einer Feldmesskampagne, die im südchinesischen Meer im Rahmen des internationalen Forschungsprojekts SHIVA durchgeführt wurde.

Die Wissenschaftler des interdisziplinären Projekts, dessen Gesamtkoordination beim Institut für Umweltphysik der Universität Heidelberg liegt, untersuchten im November und Dezember 2011 auf den Hoheitsgebieten von Malaysia, Brunei und den Philippinen die ozeanischen Quellen und atmosphärischen Transportwege der natürlichen Chlor-, Brom- und Jodverbindungen.

Die Halogene Chlor, Brom und Jod gehören zu den sogenannten ozonabbauenden Stoffen. Mikroorganismen wie Makroalgen und Phytoplankton bilden natürliche Halogenverbindungen und geben diese in die Luft ab. Das Projekt SHIVA geht der auf Forschungsergebnissen der Heidelberger Umweltphysiker beruhenden Vermutung nach, dass die Ozonschicht nicht nur durch industriell gefertigte „Ozonkiller“ wie Fluorchlorkohlenwasserstoffe (FCKW), sondern auch durch solche natürlichen Halogenverbindungen geschädigt wird.
„Unsere Messungen vor der Küste Borneos, im südchinesischen Meer und in der Sulusee zeigen, dass die biologisch produktiven küstennahen Gewässer besonders starke Quellen dieser Spurenstoffe sind“, erklärt Gesamtkoordinator Prof. Dr. Klaus Pfeilsticker vom Institut für Umweltphysik der Ruperto Carola. Für die Messungen waren das deutsche Forschungsschiff „Sonne“ und verschiedene kleinere malaysische Schiffe im Einsatz. „Zusätzlich wurden von britischen und malaysischen Kollegen Laboruntersuchungen durchgeführt, die darauf hindeuten, dass vor allem Rhodophyta, also Rotalgen, in Folge einer durch Sauerstoff ausgelösten Stressreaktion diese organischen Halogenverbindungen produzieren.“

Mit dem in Miri auf Borneo stationierten Forschungsflugzeug „Falcon“ des Deutschen Zentrums für Luft- und Raumfahrt (DLR) wurden die atmosphärischen Transportwege der Spurenstoffe eingehender untersucht. Dabei zeigte sich, dass die bodennahen, mit den Halogenverbindungen angereicherten Luftmassen wegen der in den Tropen nicht sehr ausgeprägten atmosphärischen Grenzschicht schnell in die mittlere Troposphäre transportiert werden. Außerdem gelangen sie während der Regenzeit, besonders durch Gewitterwolken, im Verlauf weniger Stunden in die obere Troposphäre. „Unsere Messungen und Modellergebnisse deuten darauf hin, dass vor allem der Transportweg über die Gewitterwolken für den Eintrag der ozonrelevanten und anderer Spurenstoffe in die obere tropische Troposphäre verantwortlich ist“, erklärt Prof. Pfeilsticker. „Von dort werden sie dann durch die Strahlungsheizung der tropischen Tropopausenschicht in die untere Stratosphäre transportiert.“

Die Wissenschaftler werden nun mit Hilfe umfangreicher Chemie-, Transport- und globaler Klimamodelle die neuen Daten auswerten und interpretieren. „Unser Ziel dabei ist es, die künftige Entwicklung der Ozonschicht unter dem Einfluss der menschengemachten Veränderung der tropischen Ozeane, der atmosphärischen Zirkulation und der Photochemie vorherzusagen“, erläutert Prof. Pfeilsticker. Die Transportwege der Halogenverbindungen in der tropischen Tropopausenregion sollen in den kommenden Jahren mit hochfliegenden Flugzeugen und unbemannten Drohnen wie der Global Hawk der NASA untersucht werden.

An dem mit insgesamt zehn Millionen Euro von der Europäischen Union und verschiedenen nationalen Institutionen geförderten Projekt sind rund 130 Wissenschaftler aus 18 Einrichtungen in Europa und Asien beteiligt. Neben dem Institut für Umweltphysik der Universität Heidelberg als Projektkoordinator wirken auf deutscher Seite das DLR, das Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR), das Alfred-Wegener-Institut für Polar- und Meeresforschung, die Universität Bremen sowie die Goethe-Universität Frankfurt an SHIVA mit. Weitere Projektpartner sind drei britische Universitäten, drei Forschungsinstitute aus Frankreich, Belgien und Norwegen sowie sechs Forschungseinrichtungen aus Malaysia und den Philippinen. SHIVA steht für „Stratospheric ozone: Halogen Impact in a Varying Atmosphere“. Nähere Informationen sind unter http://shiva.iup.uni-heidelberg.de zusammengestellt.

Hinweis an die Redaktionen:
Digitales Bildmaterial ist in der Pressestelle erhältlich.

Kontakt:
Prof. Dr. Klaus Pfeilsticker
Institut für Umweltphysik
Telefon (06221) 54-6401
klaus.pfeilsticker@iup.uni-heidelberg.de

Kommunikation und Marketing
Pressestelle, Telefon (06221) 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Weitere Informationen:
http://www.uni-heidelberg.de

Weitere Nachrichten aus der Kategorie Ökologie Umwelt- Naturschutz:

nachricht Von der Weser bis zur Nordsee: PLAWES erforscht Mikroplastik-Kontaminationen in Ökosystemen
20.09.2017 | Universität Bayreuth

nachricht Der Monsun und die Treibhausgase
18.09.2017 | Forschungszentrum Jülich

Alle Nachrichten aus der Kategorie: Ökologie Umwelt- Naturschutz >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste lichtgetriebene Stromquelle der Welt

Die Stromregelung ist eine der wichtigsten Komponenten moderner Elektronik, denn über schnell angesteuerte Elektronenströme werden Daten und Signale übertragen. Die Ansprüche an die Schnelligkeit der Datenübertragung wachsen dabei beständig. In eine ganz neue Dimension der schnellen Stromregelung sind nun Wissenschaftler der Lehrstühle für Laserphysik und Angewandte Physik an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) vorgedrungen. Ihnen ist es gelungen, im „Wundermaterial“ Graphen Elektronenströme innerhalb von einer Femtosekunde in die gewünschte Richtung zu lenken – eine Femtosekunde entspricht dabei dem millionsten Teil einer milliardstel Sekunde.

Der Trick: die Elektronen werden von einer einzigen Schwingung eines Lichtpulses angetrieben. Damit können sie den Vorgang um mehr als das Tausendfache im...

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Im Spannungsfeld von Biologie und Modellierung

26.09.2017 | Veranstaltungen

Archaeopteryx, Klimawandel und Zugvögel: Deutsche Ornithologen-Gesellschaft tagt an der Uni Halle

26.09.2017 | Veranstaltungen

Unsere Arbeitswelt von morgen – Polarisierendes Thema beim 7. Unternehmertag der HNEE

26.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Europas erste Testumgebung für selbstfahrende Züge entsteht im Burgenland

26.09.2017 | Verkehr Logistik

Nerven steuern die Bakterienbesiedlung des Körpers

26.09.2017 | Biowissenschaften Chemie

Mit künstlicher Intelligenz zum chemischen Fingerabdruck

26.09.2017 | Biowissenschaften Chemie