Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Krankheitserreger Huckepack? – Neues Leibniz-Netzwerk MikrOMIK widmet sich Mikroplastik

01.04.2014

Ist Mikroplastik im Meer das ideale Verbreitungsmedium für pathogene Keime wie zum Beispiel Vibrionen? Ein 12 Institute umfassendes Konsortium unter Leitung des Warnemünder Umweltmikrobiologen Matthias Labrenz wird dieser Frage in den nächsten drei Jahren nachgehen.

Tagtäglich werden unzählige Mikropartikel aus Kunststoff ins Meer geschwemmt. Klärwerke können diese feinsten Körnchen mit einer Größe von kleiner 5 mm nicht zurückhalten. Und die Quellen werden dabei immer zahlreicher.

Bereits ein einziger Fleece-Pullover setzt in der Waschmaschine Tausende von Mikrofasern frei, für die das Fuselsieb kein Hindernis ist. In Zahncremes und Peeling-Produkten werden sie genauso unkritisch eingesetzt wie in Putz- und Poliermitteln.

Ein moderner Haushalt scheint ohne Mikroplastik kaum noch vorstellbar. Dabei ist Kunststoff, der primär als winziges Teilchen in die Umwelt gelangt, nur die eine Seite der Mikroplastik-Welt. Daneben kommt das sekundäre Mikroplastik vor – Zerreibsel aus Plastikflaschen, Plastiktüten, Nylonnetzen – eben all dem Plastikmüll, der nicht recycelt wird.

Diese Mikropartikel können von Organismen, die sich zum Beispiel darauf spezialisiert haben, ihre Nahrung aus dem Wasser zu filtern, aufgenommen werden. Durch die geringe Zersetzbarkeit von Kunststoff passieren die Teilchen nahezu unverändert den Verdauungstrakt der Organismen und werden oftmals wieder ausgeschieden.

Allerdings könnten sich auf diesem Wege auch pathogene Keime an sie heften und sich darauf vermehren. Dass Plastik generell eine gute Oberfläche für bestimmte Krankheitserreger darstellt, ist bereits gezeigt worden.

Dass Mikroplastik durch den möglichen Transfer durch den Verdauungstrakt dafür besonders anfällig ist, wird angenommen, ist bisher aber noch nicht erwiesen. Wenn sich diese These jedoch bewahrheitet, so ist durch die Omnipräsenz und leichte Verbreitung des Mikroplastiks ein hohes Gefährdungspotential gegeben.

Für Matthias Labrenz sind die Ergebnisse des Projektes deshalb von großem gesellschaftlichem Interesse. „Wir wissen heute noch viel zu wenig, um von einer wirklichen Gefahr zu sprechen. Aber es gibt Szenarios, die von so gravierenden Risiken ausgehen, dass wir hier unbedingt Klarheit brauchen.“

In MikrOMIK arbeitet ein Netzwerk aus MikrobiologInnen, BenthologInnen, InfektionsbiologInnen, BiogeochemikerInnen und ModelliererInnen nun gemeinsam an der Überprüfung dieser These. ExpertInnen aus den führenden Häusern Deutschlands gehören zum Konsortium. Institute aus Großbritannien und Dänemark ergänzen die Expertise über die Grenzen Deutschlands hinaus.

Drei große Ziele hat sich das Netzwerk gesetzt:

1. Seine Mitglieder wollen die Verteilung von Mikroplastik in der Ostsee sowie die Bereiche von Emissionsquellen und Akkumulation erstmalig überhaupt erfassen, denn bislang fehlen dazu jegliche belastbaren Daten.

2. Die charakteristischen mikrobiellen Besiedlungsgruppen der Biofilme auf den Mikropartikeln sollen erfasst und ihre Eigenschaften und Funktionen erkannt werden.

Das dritte und übergreifende Ziel des Projekts ist die Beantwortung der Frage, welche potentiellen gesundheitlichen Risiken mit pathogenen Keimen besiedelte Mikropartikel für die Ostseeanrainerstaaten bieten.

Gefördert wird das Projekt über den so genannten „Pakt für Forschung und Innovation II“. Er stellt der Leibniz-Gemeinschaft Mittel zur Verfügung, die ihre Mitglieder wiederum im Wettbewerbsverfahren einwerben können. Die Förderung beträgt 1,35 Mio. € für drei Jahre.

Das MikrOMIK – Netzwerk

Leibniz-Institut für Ostseeforschung Warnemünde (IOW) / PD. Dr. Matthias Labrenz (Projektleitung, Umweltmikrobiologie), PD Dr. Joanna Waniek (Biogeochemie), PD Dr. Gerald Schernewski (Angewandte Küstenforschung u. Küstenzonenmanagement), Prof. Dr. Hans Burchard (Physikalische Ozeanographie und Messtechnik), Dr. Sonja Oberbeckmann (Koordination, Umweltmikrobiologie)
Leibniz-Institut für Polymerforschung Dresden (IPF) / Dr. Klaus-Jochen Eichhorn (Analyse)
Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB) / Prof. Dr. Hans-Peter Grossart (Aquatische Mikrobielle Ökologie)
Leibniz-Institut DSMZ – Deutsche Sammlung für Mikroorganismen und Zellkulturen (DSMZ) / Prof. Dr. Jörg Overmann (Direktor)
Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie, Hans-Knöll-Institut (HKI) / Prof. Dr. Axel A. Brakhage (Direktor)
Universität Aarhus, Dänemark / Dr. Jakob Strand (Marine Ökologie)
Universität Bayreuth / Prof. Dr. Christian Laforsch (Tierökologie)
Universität Greifswald / Prof. Dr. Thomas Schweder (Marine Biotechnologie)
Universität Lincoln, Großbritannien / Prof. Dr. Mark Osborn (Biotechnologie)
Universität Oldenburg / Dr. Barbara Scholz-Böttcher (Organische Analytik)
Universität Rostock / PD Dr. Stefan Forster (Meeresbiologie)
Alfred-Wegener-Institut für Polar- und Meeresforschung Bremerhaven / Dr. Gunnar Gerdts (Mikrobielle Ökologie)

Kontakt:

PD Dr. Matthias Labrenz, Sektion Biologische Meereskunde, IOW
(Tel.: 0381 / 5197 387, E-mail: matthias.labrenz@io-warnemuende.de)

Dr. Barbara Hentzsch, Öffentlichkeitsarbeit, IOW
(Tel.: 0381 / 5197 102, Email: barbara.hentzsch@io-warnemuende.de)

Nils Ehrenberg, Öffentlichkeitsarbeit, IOW
(Tel.: 0381 / 5197 106, Email: nils.ehrenberg@io-warnemuende.de)

Das IOW ist Mitglied der Leibniz-Gemeinschaft, zu der zurzeit 89 Forschungsinstitute und wissenschaftliche Infrastruktureinrichtungen für die Forschung gehören. Die Ausrichtung der Leibniz-Institute reicht von den Natur-, Ingenieur- und Umweltwissenschaften über die Wirtschafts-, Sozial- und Raumwissenschaften bis hin zu den Geisteswissenschaften. Bund und Länder fördern die Institute gemeinsam. Insgesamt beschäftigen die Leibniz-Institute etwa 17.200 MitarbeiterInnen, davon sind ca. 8.200 WissenschaftlerInnen, davon wiederum 3.300 NachwuchswissenschaftlerInnen. Der Gesamtetat der Institute liegt bei mehr als 1,5 Mrd. Euro, die Drittmittel betragen etwa 330 Mio. Euro pro Jahr. www.leibniz-gemeinschaft.de

Dr. Barbara Hentzsch | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Ökologie Umwelt- Naturschutz:

nachricht Fernerkundung für den Naturschutz
17.08.2017 | Hochschule München

nachricht "Brauchen wir das?" Auf dem Weg zu einer umweltgerechten Bedarfsprüfung von Infrastrukturprojekten
09.08.2017 | Helmholtz-Zentrum für Umweltforschung - UFZ

Alle Nachrichten aus der Kategorie: Ökologie Umwelt- Naturschutz >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie