Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kiefern verursachen Feinstaub

21.08.2012
Kiefern setzen Gase frei, die mit freien Radikalen in der Luft reagieren. Die Bäume tragen so zur schädlichen Feinstaubbelastung bei. In Experimenten konnten Forscher erstmals zeigen, wie biogene Partikel in der Atmosphäre chemisch verändert werden. Ihre Erkenntnisse sollen Klimamodelle verlässlicher und Maßnahmen zur Verbesserung der Luftqualität wirksamer machen.

In Großstädten und im Sommer ist die Feinstaubbelastung in der Atmosphäre besonders hoch. Die Luft ist dann voll von sogenannten Aerosolen, winzigen festen oder flüssigen Teilchen in Verbindung mit einem Gas.


Feinstaubbelastung über Peking an einem sonnigen Tag (rechts) bzw. an einem Tag nach Regenschauern, die die Staubpartikel aus der Luft "spülen" (links) (Quelle: © Bobak / wikipedia.de).

Diese Partikel kommen aus ganz unterschiedlichen Quellen: Bäumen, Vulkanen, Auto- und Industrieabgasen, Holzfeuer. Die Feinstaubpartikel beeinflussen nicht nur die Wolkenbildung und das Klima. Sie verursachen auch schwere Herz- und Lungenleiden. Nach Angaben der Weltgesundheitsorganisation (WHO) sterben jährlich mehr als eine Millionen Menschen an der Luftverschmutzung.

Die Erdatmosphäre ist hoch reaktiv. Areosole werden dort sehr schnell oxidiert. Die entstehenden Partikel haben häufig eine völlig andere Zusammensetzung und auch andere Eigenschaften als der Ursprungsstoff. Wenig bekannt ist bislang, wie die Größe und die chemische Zusammensetzung dieser Partikel die gesundheitsschädliche Wirkung des Feinstaubs beeinflussen. Bisherige Studien konzentrierten sich vor allem auf die Auswirkungen von Auto- und Industrieabgasen in der Atmosphäre. Sie beschrieben, wie freie Radikale diese Areosole chemisch verändern, sie altern lassen. Ob auch Emissionen aus biologischen Quellen wie Bäumen signifikant zur Feinstaubbelastung betragen, betrachteten diese Studien nicht.
In der künstlichen Atmosphäre

Mit Laborexperimenten gingen Forscher dieser Frage nach. Sie untersuchten am Beispiel des von Kiefern freigesetzten Stoffs Alpha-Pinen, was mit organischen Partikeln in der Atmosphäre geschieht.

Die Geschehnisse in der Atmosphäre simulierten die Forscher in vier speziellen Luftkammern. In diesen künstlichen Atmosphären in der Größe von mehreren Kubikmetern reicherten sie Luft mit Ozon (O3) und Alpha-Pinen an. Dies löste eine Reihe von Reaktionen in der Dampfphase ebenso wie in den Kondensaten aus. Dann gaben sie Hydroxyl-Radikale (OH) in die Kammern. Diese hoch reaktiven Moleküle sind in der Atmosphäre stark verbreitet. Sie entstehen durch UV-Strahlung aus einem Wasserstoff- und einem Sauerstoffatom und reagieren sehr leicht mit anderen Chemikalien in der Luft. In ihren Experimenten untersuchten die Forscher den Einfluss dieser freien Radikale und weiterer Faktoren – Temperatur, Licht, Flüchtigkeit der Substanzen, Größe der künstlichen Atmosphäre – auf die biogenen Aerosole. Ausgewertet wurden die Daten mit einem Computermodell, welches die verschiedenen Einflussfaktoren integrierte.

Kiefern sind Luftverschmutzer

Die Versuche bestätigten, dass die freien Radikale mit den Alpha-Pinenen der Kiefern reagierten. Sie veränderten deren chemische Zusammensetzung und auch die Konzentration der Partikel. Nach der Zufuhr der OH-Radikale nahm die Masse der biogenen Aerosole stark zu und auch deren Sauerstoffgehalt. Im Durchschnitt verdreifachte sich die Masse der Aerosole. Aber die Konzentration der Aerosole in der Atmosphäre ist nicht allein entscheidend für die Feinstaubbelastung. Viel wichtiger noch sind eine hohe Oxidationsrate und eine geringe Flüchtigkeit der Partikel in der Atmosphäre.

Was in der Atmosphäre passiert

Bislang gab es eine Verständnislücke zwischen den in Laborstudien simulierten Prozessen und dem tatsächlichen Vorgehen in der Atmosphäre. Mit ihren Experimenten können die Forscher diese Lücke nun zumindest teilweise schließen. Sie konnten zeigen, dass freie Radikale mit biogenen Stoffen wie Alpha-Pinenen reagieren und damit die Entstehung und Oxidation biogener Aerosole in der Atmosphäre begünstigen. Nur wenige atmosphärische Vorhersagemodelle berücksichtigen diese natürlichen Aerosole bislang. Die neuen Erkenntnisse sollen nun Klimamodelle verlässlicher und Maßnahmen zur Verbesserung der Luftqualität wirksamer machen, so hoffen die Wissenschaftler.

Der Einfluss des Menschen

Auch natürliche Aerosole wie Alpha-Pinene können zur Feinstaubbelastung in der Luft beitragen, dies zeigen die Experimente. Bäume setzen große Mengen dieser organischen Verbindungen frei. Aus diesen entstehen aber erst dann gesundheitsschädliche Partikel, wenn sie in der Atmosphäre mit bestimmten anderen Chemikalien reagieren. Je nach chemischer Zusammensetzung der Atmosphäre werden sich die Menge und auch die Eigenschaften dieser Partikel unterscheiden.

Hierin sehen die Forscher eine Chance, denn der Mensch beeinflusst durch die Freisetzung von Abgasen und Treibhausgasen die Chemie der Atmosphäre. Indem diese Emissionen reduziert werden, kann auf die Zusammensetzung der Atmosphäre Einfluss genommen und so die Entstehung gesundheitsschädlicher Feinstaubpartikel reduziert werden.

Quelle:

Donahuea, N. M. et al. (2012): Aging of biogenic secondary organic aerosol via gas-phase OH radical reactions. PNAS (9. August), doi: 10.1073/pnas.1115186109.

Donahuea, N. M. et al. | Pflanzenforschung.de
Weitere Informationen:
http://www.pflanzenforschung.de/journal/aktuelles/kiefern-verursachen-feinstaub?piwik_campaign=newsletter

Weitere Nachrichten aus der Kategorie Ökologie Umwelt- Naturschutz:

nachricht Müll in den Weltmeeren überall präsent: 1220 Arten betroffen
23.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Internationales Netzwerk bündelt experimentelle Forschung in europäischen Gewässern
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

Alle Nachrichten aus der Kategorie: Ökologie Umwelt- Naturschutz >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen