Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher der Universität Hohenheim vermessen die Vulkanaerosole über Stuttgart

20.04.2010
Großes Rätselraten herrscht über die Verteilung und die Wirkung der Vulkanaerosole, die den Luftverkehr in Europa fast zum Erliegen bringen. Entgegen anders lautender Meldungen gibt es aber eine Methode, die Licht ins Dunkel bringen kann: Mit moderner Lasertechnik kann sehr genau die vertikale Verteilung der Aerosolpartikel vom Boden bis in die Stratosphäre vermessen werden.

Gestern Abend führten Hohenheimer Forscher vom Institut für Physik und Meteorologie mit einem weltweit einzigartigen Laserfernerkundungssystem die erste Messung über Stuttgart durch. Die Messergebnisse zeigen, dass die Vulkan-Aerosole hauptsächlich zwischen 2-3 km über dem Boden zu finden sind. Die Konzentration wird nun gemeinsam mit anderen Forschungsinstituten bestimmt. So können den Entscheidungsträgern wertvolle Datensätze an die Hand gegeben werden, um die Gefahr für die Flugsicherheit realistisch einzuschätzen.

Die Emission der Aerosole des Vulkans Eyjafjallajok hat den Luftverkehr in Europa nahezu zum Erliegen gebracht. Vulkanasche kann die Triebwerke von Flugzeugen beschädigen und sogar zu deren Ausfall bringen. Die Vorsichtsmassnahmen im Hinblick auf die Flugsicherheit beruhen auf Vermutungen über die Konzentration und Verteilung der Vulkanasche. Diese Informationen werden hauptsächlich aus Daten einer Computersimulation beim Volcanic Ash Advisory Centre in London sowie aus Satellitendaten gewonnen. Da aber Satellitenmessungen auf "passiv" gestreutem Sonnenlicht und auf Emissionen der Strahlung der Erde basieren, erlauben sie weder genaue Messungen über die Vertikalverteilung von Aerosolpartikeln noch über deren Konzentration.

Hier kommt nun eine innovative, lasergestützte Messtechnik ins Spiel, die als Lidar (Light Detection and Ranging) bezeichnet wird. Im Gegensatz zu den Standardmethoden des Wetter- und Klimamonitoring erlaubt sie horizontale und vertikale Messungen mit sehr großer Auflösung. Das Lidar-System des Instituts für Physik und Meteorologie (IPM) der Universität Hohenheim ist sogar in der Lage, räumliche Abtastungen durchzuführen, die Atmosphäre also nach Aerosolpartikeln abzuscannen, und ist damit weltweit einzigartig.

"Wo die Standardmethoden der Wetterdienste an ihre Grenzen stoßen, ist die Wetterforschung gefragt", so Prof. Dr. Volker Wulfmeyer, Leiter des Instituts für Physik und Meteorologie der Universität Hohenheim. "Verschiedene Forschungseinrichtungen in Deutschland verfügen über hochmoderne Lidar-Systeme, die selbst in klarer Luft Aerosole sichtbar machen können. In dieser Krise können sie sich als besonders hilfreich erweisen, wenn sie ihre Messungen miteinander koordinieren." Auf diesem Wege könne, so der Hohenheimer Atmosphärenforscher, den Entscheidungsträgern ein aussagekräftiger Datensatz geliefert werden, um das Gefährdungspotential der Vulkanaschewolke realistisch einschätzen zu können.

Die ersten Messungen geben nun folgendes Bild ab, dass sich natürlich nur auf den Messstandort bei der Universität Hohenheim bezieht, wegen der unmittelbaren Nähe zum Flughafen Stuttgart - ca. 3 km - aber hochinteressant ist: Die Vulkan-Aerosole sind hauptsächlich zwischen 2-3 km über dem Boden zu finden sind. Die Konzentrationen überschreiten kaum die Signale, die durch industrielle Emissionen oder den Verkehr auftreten. Von 3-8 km sind keine signifikanten Aerosolmengen nachweisbar und eine Schicht von 8-9 km zeigte Zirruswolken, die eventuell von Aerosolpartikeln beeinflusst sein könnten.

Heißt das nun, dass von einer großen Aschewolke über Stuttgart keine Rede sein kann, dass also die Auswirkungen des Vulkanausbruchs zumindest für die Region Stuttgart überschätzt wurden? "Eine solche Schlussfolgerung wäre voreilig", warnt der Hohenheimer Atmosphärenforscher. "Wenn die Messungen des DLR - Forschungsflugzeugs Falcon vorliegen, mit denen wir unsere bodengestützte Messung zeitlich und räumlich koordiniert haben, wissen wir schon mehr. Die Konsequenz aus unserem Datensatz für die Flugsicherheit können natürlich nicht die Meteorologen allein ziehen, denn hier kommt es auf Expertenwissen aus der Luftfahrttechnik an." Die in der Wolke gesammelten Daten werden so schnell wie möglich ausgewertet und dem Deutschen Wetterdienst und der Flugsicherung für eine Beurteilung des Flugverbots übermittelt. Der erste Eindruck nach der Hohenheimer Messung deutet jedoch auf eine weniger dramatische Kontamination der Atmosphäre hin, als bisher befürchtet wurde.

Ansprechperson für Medienvertreter:
Prof. Dr. Volker Wulfmeyer, Universität Hohenheim,
Institut für Physik und Meteorolgie,
Tel.: 0711/ 459-22150, E-Mail: volker.wulfmeyer@uni-hohenheim.de

Florian Klebs | idw
Weitere Informationen:
http://www.uni-hohenheim.de

Weitere Nachrichten aus der Kategorie Ökologie Umwelt- Naturschutz:

nachricht Müll in den Weltmeeren überall präsent: 1220 Arten betroffen
23.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Internationales Netzwerk bündelt experimentelle Forschung in europäischen Gewässern
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

Alle Nachrichten aus der Kategorie: Ökologie Umwelt- Naturschutz >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen