Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Flexible Räuber halten Ökosysteme im Gleichgewicht

07.08.2009
Forscher finden universelle Regeln für die Stabilität von Nahrungsketten

Wissenschaftler aus Deutschland, Österreich und den USA haben mithilfe von Computersimulationen fundamentale Gesetzmäßigkeiten aufgedeckt, die die Stabilität von Ökosystemen mitbestimmen.

Nahrungsnetze sind demnach stabiler, wenn Raubtierarten an der Spitze der Nahrungskette sich von verschiedenen Beutetieren ernähren und Beutearten in der Mitte der Nahrungskette vielen Räubern ausgesetzt sind. Die Berechnungen haben zudem ergeben, dass kleine Ökosysteme anderen Regeln gehorchen als große: Unterschiede in der Stärke von Räuber-Beute Beziehungen fördern die Stabilität kleiner Netze, destabilisieren aber große Nahrungsnetze.

Lebensgemeinschaften auf der Erde bilden miteinander verwobene Nahrungsketten, in denen die einzelnen Tiere und Pflanzen sowohl Beute als auch Räuber sein können. Mögliche Nahrungsnetze unterscheiden sich nicht nur darin, welche Tier- und Pflanzenarten sie umfassen, sie sind auch unterschiedlich stabil: In der Natur sind die meisten Nahrungsnetze stabil, d.h. die Wechselbeziehungen zwischen den Arten bleiben über lange Zeit konstant.

Komplexe Systeme, wie z. B. Nahrungsnetze, stellen die Wissenschaft noch immer vor große Herausforderungen. Sie können einerseits durch Beobachtung von natürlichen Lebensräumen, andererseits durch Computersimulationen untersucht werden. Um solche Systeme am Computer simulieren zu können, müssen Forscher ihre Modelle oft stark vereinfachen und die Zahl der Einflussfaktoren möglichst klein halten. Die Simulationen sind trotzdem sehr rechenintensiv und Ihre Aussagekraft ist oftmals begrenzt.

Wissenschaftler vom Max-Planck-Institut für Physik komplexer Systeme in Dresden, Deutschland, haben deshalb eine neue Methode entwickelt, mit der sich der Einfluss unzähliger Einflussfaktoren auf komplexe Systeme effizient untersuchen lässt. "Mithilfe so genannter Generalisierter Modelle berechnen wir, ob ein gegebenes Nahrungsnetz prinzipiell stabil sein kann, d.h., ob die beteiligten Arten langfristig zusammenleben können", sagt Thilo Gross vom Max-Planck-Institut für Physik komplexer Systeme. Komplexe Ökosysteme lassen sich damit unter nahezu allen erdenklichen Bedingungen nachstellen und untersuchen. Thilo Gross: "So können wir abschätzen, welche Parameter Ökosysteme stabil halten und welche sie aus dem Gleichgewicht bringen." Die Modelle eignen sich nicht nur zur Simulation von Ökosystemen, auch andere komplexe Systeme wie der menschliche Stoffwechsel oder die Steuerung von Genen können damit untersucht werden.

Generalisten stabilisieren, Spezialisten destabilisieren

Zusammen mit Kollegen vom Internationalen Institut für angewandte Systemanalyse (IIASA) in Laxenburg, Österreich, und der Princeton Universität in den USA ist es den Forschern mit ihrem innovativen Modellierungsansatz gelungen, gleich mehrere universelle Gesetzmäßigkeiten im Verhalten von Ökosystemen zu entdecken. "Große Raubtiere stabilisieren Lebensgemeinschaften, wenn sie sich von vielen verschiedenen Arten von Beutetieren ernähren. Gleichzeitig sind Ökosysteme stabiler, wenn Beutetiere in der Mitte der Nahrungskette mehreren Raubtierarten Nahrung liefern", erklärt Ulf Dieckmann vom IIASA.

Die Wissenschaftler haben darüber hinaus zusätzliche stabilisierende und destabilisierende Faktoren identifiziert. Ist das Nahrungsnetz eines Ökosystems besonders eng geknüpft, macht dies das System instabiler. Auch wenn die Bedrohung durch Raubtiere stark von der Dichte der Räuber abhängt, kann sich dies destabilisierend auswirken. Dagegen sind Nahrungsnetze eher im Gleichgewicht, wenn der Beutefang stark von der Dichte der Beutetiere abhängt.

Unterschiede zwischen kleinen und großen Systemen

Ein weiterer wichtiger Befund ist, dass sich Nahrungsnetze, die nur aus wenigen Arten bestehen, qualitativ anders verhalten als Netze mit vielen Arten. "Kleine Ökosysteme funktionieren offenbar nach anderen Regeln als große", betont Ulf Dieckmann. Systeme mit wenig Arten sind stabiler, wenn es zwischen manchen Arten sehr starke, zwischen anderen Arten aber nur schwache Beziehungen gibt. Bei Netzen, die aus vielen Arten bestehen, ist dies offenbar genau umgekehrt. Extrem starke oder schwache Räuber-Beute Beziehungen sollten demzufolge in der Natur umso seltener sein, je größer die Nahrungsnetze sind.

[HR]

Originalveröffentlichung:

Thilo Gross, Lars Rudolf, Simon A. Levin, Ulf Dieckmann
Generalized Models Reveal Stabilizing Factors in Food Webs
Science (2009), 10.1126/science.1173536
Weitere Informationen erhalten Sie von:
Dr. Thilo Gross
Max-Planck-Institut für Physik komplexer Systeme, Dresden
Tel.: +49 (0) 351 871-1122
E-Mail: thilo.gross@physics.org
Dr. Ulf Dieckmann
Internationales Institut für angewandte Systemanalyse (IIASA), Laxenburg (Österreich)
Tel.: +43 (0) 2236 807-386
E-Mail: dieckmann@iiasa.ac.at
Leane Regan
Internationales Institut für angewandte Systemanalyse (IIASA), Laxenburg, Österreich
Tel.: +43 (0) 2236 807-316
E-Mail: regan@iiasa.ac.at

Dr. Felicitas von Aretin | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Ökologie Umwelt- Naturschutz:

nachricht Frühwarnsignale für Seen halten nicht, was sie versprechen
05.12.2016 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Besserer Schutz vor invasiven Arten
15.11.2016 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

Alle Nachrichten aus der Kategorie: Ökologie Umwelt- Naturschutz >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher entwickeln Unterwasser-Observatorium

07.12.2016 | Biowissenschaften Chemie

HIV: Spur führt ins Recycling-System der Zelle

07.12.2016 | Biowissenschaften Chemie

Mehrkernprozessoren für Mobilität und Industrie 4.0

07.12.2016 | Informationstechnologie