Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Extreme winters impact fish negatively

14.02.2013
Ecologists from Umeå University and the Norwegian University of Science and Technology in Trondheim have studied fish communities and the living environments of fish and put together a compilation of the importance of winter conditions for fish in streams and rivers in cold regions. The findings are now being published in the journal BioScience.

It is well known that winter can be a stressful season for plants and animals in streams and rivers. It is reasonable to assume that it is the more extreme weather conditions that are the most taxing, but the ecological significance of this is poorly understood.


It is difficult to be a fish when the bottom of the river is covered with ice. Winter image from the river Orkla in Norway. Photo: Knut Alfredsen

The research team, headed by Professor Christer Nilsson at Umeå University, describes how extreme conditions – especially those associated with ice formation and ice break-up – vary over time and affect both the non-living environment and its fish. For example, waterways can fill up with ice and kill all fish that do not manage to flee to backwaters or deeper stretches of quiet water that is not filled with ice. Young fish are especially vulnerable.

The researchers also discuss how humans have impacted what happens in streams and rivers in the winter.

“Rivers that have been exploited for hydroelectric power can be especially hard for fish to live in, because the way hydropower is produced often means that the flow is radically changed again and again, which can lead to repeated ice break-ups and a great deal of bottom ice formation. When the ice cover at the surface disappears, cold air is fed downward in the water and forms ice crystals that cover the bottom, making it hard for fish to survive,” says Christer Nilsson.

The scientists draw a number of conclusions from the study. One is that more measurements are needed in order to be able to predict when extreme situations in waterways may arise and that information about both the lives of different fishes and how they are affected by extreme events should be included in such data gathering. Another is that models of how water moves and what fish populations look like should also take winter conditions into consideration.

Today most models are about the ice-free period. A third conclusion is that in order to be able to manage streams and rivers in a long-term sustainable manner, we need to pay attention to future changes in climate, for example, when we design restoration and conservation measures.

“The predictions made about what the winter climate will be like in the future say that there will be more back and forth between thaw and frost, entailing more unstable ice conditions, more rain, and flooding, and ultimately perhaps more challenges to the survival of fish in many waterways,” says Christer Nilsson.

Original publication:
The article will be published in the March issue of BioScience
Weber, C., C. Nilsson, L. Lind, K.T. Alfredsen & L.E. Polvi. 2013. Winter disturbances and riverine fish in temperate and cold regions. BioScience 63:199-210. doi:10:1525/bio.2013.63.3.8.
For more information, please contact:
Christer Nilsson, Department of Ecology and Environmental Science, Umeå University, Phone: +46 (0)90-786 60 03, E-mail: christer.nilsson@emg.umu.se

Ingrid Söderbergh | idw
Further information:
http://www.umu.se

Further reports about: BioScience fish population ice crystal ice formation

More articles from Ecology, The Environment and Conservation:

nachricht Hunting pressure on forest animals in Africa is on the increase
09.02.2016 | Goethe-Universität Frankfurt am Main

nachricht Man-made underwater sound may have wider ecosystem effects than previously thought
05.02.2016 | University of Southampton

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Supraleitung: Fußbälle ohne Widerstand

Hinweise auf einen lichtinduzierten verlustfreien Stromtransport in Alkali-Fulleriden helfen bei der Suche nach supraleitenden Materialien für die Praxis.

Supraleiter bleiben einstweilen in Nischenanwendungen verbannt. Da selbst die besten dieser Materialien erst bei minus 70 Grad Celsius ihren elektrischen...

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

Im Focus: Superconductivity: footballs with no resistance

Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications.

Superconductors have long been confined to niche applications, due to the fact that the highest temperature at which even the best of these materials becomes...

Im Focus: "Footware Innovation" – Digitale Techniken für individuelles Schuhwerk

Sieben mittelständische Unternehmen des Orthopädiefachhandwerks, die Universität Bayreuth und die Fraunhofer-Projektgruppe Prozessinnovation in Bayreuth haben sich zum neuen Netzwerk „Footware Innovation Network (FIN)“ zusammengeschlossen. Das Netzwerk soll dem Orthopädiefachhandwerk den Nutzen digitaler Technologien vom 3D-Scan bis zum 3D-Druck erschließen, um kundenorientiert und dabei kostengünstig höchst individuelle Produkte herstellen zu können.

Praktikable Produktlösungen für das Orthopädiefachhandwerk

Im Focus: Wbp2 is a novel deafness gene

Researchers at King’s College London and the Wellcome Trust Sanger Institute in the United Kingdom have for the first time demonstrated a direct link between the Wbp2 gene and progressive hearing loss. The scientists report that the loss of Wbp2 expression leads to progressive high-frequency hearing loss in mouse as well as in two clinical cases of children with deafness with no other obvious features. The results are published in EMBO Molecular Medicine.

The scientists have shown that hearing impairment is linked to hormonal signalling rather than to hair cell degeneration. Wbp2 is known as a transcriptional...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

FZI Open House: IKT-Forschung für die Praxis hautnah erleben

09.02.2016 | Veranstaltungen

KIT 2016: Infektiologen und Tropenmediziner tagen in Würzburg

08.02.2016 | Veranstaltungen

11. European Bioplastics Konferenz 2016

08.02.2016 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Supraleitung: Fußbälle ohne Widerstand

09.02.2016 | Physik Astronomie

Beinahe Unmögliches aus dem 3D-Drucker

09.02.2016 | Informationstechnologie

Das große Strömen zum Licht

09.02.2016 | Biowissenschaften Chemie