Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

DNA reveals mating patterns of critically endangered sea turtle

04.02.2013
New University of East Anglia research into the mating habits of a critically endangered sea turtle will help conservationists understand more about its mating patterns.

Research published today in Molecular Ecology shows that female hawksbill turtles mate at the beginning of the season and store sperm for up to 75 days to use when laying multiple nests on the beach.


New University of East Anglia research into the mating habits of a critically endangered sea turtle will help conservationists understand more about its mating patterns. The turtle is critically endangered, largely due to the (now banned) international trade in tortoiseshell as a decorative material. Because the turtles live underwater, and often far out to sea, little has been understood about their breeding habits until now. The breakthrough was made by studying DNA samples.

Credit: Karl Phillips (University of East Anglia)

It also reveals that these turtles are mainly monogamous and don't tend to re-mate during the season.

Because the turtles live underwater, and often far out to sea, little has been understood about their breeding habits until now. The breakthrough was made by studying DNA samples taken from turtles on Cousine Island in the Seychelles.

The hawksbill turtle (Eretmochelys imbricata) was listed as critically endangered in 1996 by the International Union for Conservation of Nature (IUCN), largely due to a dramatic reduction in their numbers driven by the international trade in tortoiseshell as a decorative material – an activity which was banned in the same year.

The Seychelles are home to the largest remaining population of hawksbill turtles in the western Indian Ocean. Cousine Island is an important nesting ground for the hawksbill and has a long running turtle monitoring program. It is hoped that the research will help focus conservation efforts in future.

Lead researcher Dr David Richardson, from UEA's school of Biological Sciences, said: "We now know much more about the mating system of this critically endangered species. By looking at DNA samples from female turtles and their offspring, we can identify and count the number of breeding males involved. This would otherwise be impossible from observation alone because they live and mate in the water, often far out to sea.

"We now know that female turtles mate at the beginning of the season - probably before migrating to the nesting beaches. They then store sperm from that mating to use over the next couple of months when laying multiple nests.

"Our research also shows that, unlike in many other species, the females normally mate with just one male, they rarely re-mate within a season and they do not seem to be selecting specific 'better quality' males to mate with.

"Understanding more about when and where they are mating is important because it will help conservationists target areas to focus their efforts on.

"It also lets us calculate how many different males contribute to the next generation of turtles, as well as giving an idea of how many adult males are out there, which we never see because they live out in the ocean.

"Perhaps most importantly, it gives us a measure of how genetically viable the population is - despite all the hunting of this beautiful and enigmatic species over the last 100 years.

"The good news is that each female is pairing up with a different male – which suggests that there are plenty of males out there. This may be why we still see high levels of genetic variation in the population, which is crucial for its long term survival .This endangered species does seem to be doing well in the Seychelles at least."

Lead author Karl Phillips, a PhD student in UEA's school of Biological Sciences, added: "This is an excellent example of how studying DNA can reveal previously unknown aspects of species' life histories."

The research was funded by UEA and the Natural Environment Research Council (NERC) Biomolecular Analysis Facility (NBAF).

'Reconstructing paternal genotypes to infer patterns of sperm storage and sexual selection in the hawksbill turtle' by David S. Richardson, Karl P. Phillips, and Tove H.Jorgensen (all UEA) and Kevin G. Jolliffe, San-Marie Jolliffe and Jock Henwood (Cousine Island) is published by the journal Molecular Ecology on Monday, February 4, 2012.

Lisa Horton | EurekAlert!
Further information:
http://www.uea.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics