Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Biologische Reinigung bei schwermetall- und sulfathaltigen Industrie-Abwässern effektiv

10.06.2010
Giftige Industrie-Abwässer kostengünstiger, umweltschonend und effektiver zu reinigen als bisher gebräuchliche Verfahren erlaubt eine mehrfach patentierte Erfindung aus der Universität Kassel.

Mit einem Festbett-Bioreaktor und Sulfat reduzierenden Bakterien kann das neue biochemische Reinigungsverfahren saure und sulfathaltige Waschwässer, etwa aus Bergwerken, vor Ort reinigen. Das ist nicht nur zu rund 30 Prozent geringeren Kosten als bisher möglich - es fallen auch keine Reststoffe mehr an, die auf Sonderdeponien entsorgt werden müssen. Stattdessen entstehen Produkte, die für andere Industrieprozesse wieder verwendet werden können.

In vielen Industriebetrieben wie Müllverbrennungsanlagen, Kohlekraftwerken und Bergwerken fallen bei der Produktion hochkonzentrierte schwermetall- und sulfathaltige, stark saure Abwässer an, beispielsweise auch bei der Rauchgasentschwefelung. Die bisher bekannten chemischen Verfahren (Nassverfahren) zur Reinigung von schwefel- und schwermetallhaltigen Lösungen, bei denen etwa Kalkmilch (Kalkhydrat) zur Elimination von Schwermetallionen wie Cadmium, Quecksilber, Zink, Chrom oder Kupfer verwendet wird, haben Nachteile: Es entsteht eine große Menge von synthetischem Gips, der Schwermetalle und andere giftige Stoffe beinhaltet. Daher muss er teuer auf Sondermülldeponien entsorgt werden.

Im Fachgebiet Siedlungswasserwirtschaft am Fachbereich Bauingenieurwesen der Universität Kassel unter Leitung von Professor Dr.-Ing. Franz-Bernd Frechen mit seinem Wissenschaftlichen Mitarbeiter Dr.-Ing. Waldemar Dinkel wurde nun ein biochemisches Verfahren entwickelt, das in einem geregelten, doppelten Reaktionskreislauf die Schwermetalle aus Waschsäure ausfällt und Säure gewinnt, die im Reinigungsprozess eines Industriebetriebes wieder eingesetzt werden kann. Auch der Metallschlamm, der nach der Waschsäurereinigung übrig bleibt, ist wieder verwertbar. Er besteht überwiegend aus Metallsulfid, also einer chemischen Verbindung, in der Metalle auch in der Natur überwiegend zu finden sind.

Die Grundlagen für dieses Verfahren wurden im Rahmen eines Kooperationsprojekts mit der Staatlichen erdöltechnischen Universität Ufa in Russland erarbeitet. Herzstück des Reinigungsverfahrens, das bereits zwei Patente für Europa und Russland erhalten hat und für zwei weitere angemeldet wurde, ist ein Festbett-Bioreaktor, in dem mit Glycerin gefütterte Bakterien ihre Arbeit verrichten: Sie „verdauen" verdünntes sulfathaltiges Abwasser und produzieren auf biochemischem Weg Sulfid. So wird Schwefelwasserstoff (H2S) erzeugt.

In einem weiteren Reaktor wird der Schwefelwasserstoff mit Luft oder Stickstoff aus dem Abwasser gestrippt und in einen dritten Behälter mit stark konzentriertem Abwasser überführt. Mit Hilfe des Schwefelwasserstoffs werden dort die Schwermetallionen gebunden und fast vollständig ausgefällt.

Dank des entwickelten Bioreaktors habe man im Laborversuch 99,9 Prozent des Zinks im Abwasser ausfällen und 64 Prozent des Sulfats reduzieren können, sagt Dr. Dinkel. Der Wissenschaftler, der früher an der Universität in Ufa gelehrt hat und seit 1997 an der Universität Kassel forscht, hat durch Experimente herausgefunden, in welchem Säuremilieu und bis zu welcher Konzentration von Schwermetallen im Abwasser die Sulfat reduzierenden Bakterien die optimale Menge von Sulfiden produzieren.

Die Grundlagen dieses neuartigen biologischen Reinigungsverfahrens sind bereits während eines mit 175.000 € von der Deutschen Forschungsgemeinschaft (DFG) geförderten zweijährigen Kooperationsprojekts mit der - mit der Kasseler Uni seit Jahren befreundeten - erdöltechnischen Universität Ufa in Russland gelegt worden, das vor sieben Jahren startete. So stammen die Sulfatreduzierenden Bakterien für den Kasseler Bioreaktor beispielsweise aus dem Abwasserteich des Erdölverarbeitungswerks Ufa. Die Russen sind an kostengünstigen Techniken zur Abwasserreinigung interessiert, da es in dieser Region viele Bergbau- und Erdölbetriebe gibt.

Frechen sieht die wirtschaftlichen Chancen der Erfindung aus Kassel vor allem im Bergbau und bei Müllverbrennungsanlagen. Das Fachgebiet habe ein auf Bergwerke zugeschnittenes Verfahren entwickelt und im Labor getestet, das kostengünstiger und effektiver als die bisher gebräuchlichen Verfahren saure und sulfathaltige Waschwässer vor Ort reinige. Das jährliche Betriebskosten-Einsparpotential schätzt Frechen auf bis zu 30 Prozent. Ein Bergwerksbetrieb könne so jedes Jahr Millionen Euro einsparen. Dr. Dinkel sieht auch Einsatzchancen in anderen Industriebetrieben, z.B. in der Galvanik, wo Schwermetallionen und Sulfate zum Einsatz kommen. Das Reinigungssystem unterbiete schon jetzt deutlich die zulässigen Einleitungsgrenzwerte für Industrieabwässer. Mit einer weiteren Verschärfung der europäischen Umweltschutzvorschriften werde die Erfindung aus Kassel für die Unternehmen immer interessanter.

Info
Prof. Dr.-Ing. Franz-Bernd Frechen
Dr.-Ing. Waldemar Dinkel
tel (0561) 804 2870
e-mail wdinkel@uni-kassel.de
Universität Kassel
Fachbereich Bauingenieurwesen
Fachgebiet Siedlungswasserwirtschaft
Kurt-Wolters-Straße 3
34125 Kassel

Christine Mandel | idw
Weitere Informationen:
http://www.uni-kassel.de

Weitere Nachrichten aus der Kategorie Ökologie Umwelt- Naturschutz:

nachricht Von der Weser bis zur Nordsee: PLAWES erforscht Mikroplastik-Kontaminationen in Ökosystemen
20.09.2017 | Universität Bayreuth

nachricht Der Monsun und die Treibhausgase
18.09.2017 | Forschungszentrum Jülich

Alle Nachrichten aus der Kategorie: Ökologie Umwelt- Naturschutz >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste lichtgetriebene Stromquelle der Welt

Die Stromregelung ist eine der wichtigsten Komponenten moderner Elektronik, denn über schnell angesteuerte Elektronenströme werden Daten und Signale übertragen. Die Ansprüche an die Schnelligkeit der Datenübertragung wachsen dabei beständig. In eine ganz neue Dimension der schnellen Stromregelung sind nun Wissenschaftler der Lehrstühle für Laserphysik und Angewandte Physik an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) vorgedrungen. Ihnen ist es gelungen, im „Wundermaterial“ Graphen Elektronenströme innerhalb von einer Femtosekunde in die gewünschte Richtung zu lenken – eine Femtosekunde entspricht dabei dem millionsten Teil einer milliardstel Sekunde.

Der Trick: die Elektronen werden von einer einzigen Schwingung eines Lichtpulses angetrieben. Damit können sie den Vorgang um mehr als das Tausendfache im...

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Im Spannungsfeld von Biologie und Modellierung

26.09.2017 | Veranstaltungen

Archaeopteryx, Klimawandel und Zugvögel: Deutsche Ornithologen-Gesellschaft tagt an der Uni Halle

26.09.2017 | Veranstaltungen

Unsere Arbeitswelt von morgen – Polarisierendes Thema beim 7. Unternehmertag der HNEE

26.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Europas erste Testumgebung für selbstfahrende Züge entsteht im Burgenland

26.09.2017 | Verkehr Logistik

Nerven steuern die Bakterienbesiedlung des Körpers

26.09.2017 | Biowissenschaften Chemie

Mit künstlicher Intelligenz zum chemischen Fingerabdruck

26.09.2017 | Biowissenschaften Chemie