Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Pflanzen am Südpol reparieren sich selbst

27.11.2001


Mit Unterstützung der Niederländischen Forschungsorganisation NWO haben niederländische Wissenschaftler die Auswirkungen des Ozonlochs auf die Vegetation der Antarktis untersucht. Es zeigte sich, dass - obwohl beispielsweise die Reparaturmechanismen von Flechten und Moosen sogar bei niedrigen Temperaturen effektiv zu funktionieren scheinen - das heutige ökologische Gleichgewicht dennoch gefährdet ist. Denn die Temperaturzunahme infolge des Treibhauseffekts führt zu irreversiblen Veränderungen ihres Ökosystems.

Im Zeitraum von 1997 bis 2001 untersuchten niederländische Ökologen auf der Antarktischen Halbinsel eine Gras-, Moos- und Algenart und Flechten. Die Umweltforscherin Daniela Lud prüfte gemeinsam mit anderen Wissenschaftlern des Niederländischen Instituts für Umweltforschung in Yerseke die Auswirkungen ultravioletter Strahlung auf das pflanzliche Wachstum. Wegen des Ozonlochs ist die Antarktische Halbinsel in jedem Frühjahr der schädlichen, kurzwelligen UVB-Strahlung ausgesetzt.
Zu diesem Zweck wurden über dem Bewuchs Filter angebracht. Die Hälfte der Filter ließ das schädliche UV-Licht hindurch, die andere Hälfte nicht. Auf diese Weise konnte festgestellt werden, ob das UV-Licht die Fotosynthese und die Konzentration der schützenden Pigmente in den Gräsern, Moosen und Flechten beeinflusst. Außerdem wurde untersucht, ob das UV-Licht Schäden am Erbmaterial der Vegetation anrichtet.
Die negativen Folgen der UV-Strahlung erwiesen sich als gering. Alle Vegetationsformen enthalten große Mengen an schützenden Pigmenten. Außerdem sind biologische Mechanismen für die Reparatur beschädigter DNS auch bei niedrigen Temperaturen noch sehr wirkungsvoll. Soweit die gute Nachricht.
Die gleiche Untersuchung lieferte aber noch eine zweite, weniger erfreuliche Erkenntnis. Beim Vergleich einer offenen Anordnung von Pflanzen mit einer geschlossenen und daher etwas wärmeren Anordnung zeigte sich, dass die Vegetation von der Temperatur beeinflusst wird. Manche Moose und die Grasart Antarktische Schmiele wuchsen bei einer höheren Temperatur schneller, die Flechten hingegen reagierten gar nicht bzw. kaum.
Die Wissenschaftler erwarten, dass ein künftiger Temperaturanstieg deutlich spürbare Auswirkungen auf die Artenzusammensetzung der antarktischen Vegetation haben wird. Die schneller wachsenden Gräser und Moose dürften die Flechten verdrängen.
Nähere Informationen:
Daniela Lud (NIOO-CEMO, Zentrum für ästuarine und marine Ökologie)
T +31 570 614 330 (privat) oder 113 577 470 (CEMO)
F +31 113 573 616 (CEMO)
E-Mail: lud@cemo.nioo.knaw.nl

Msc Michel Philippens | idw
Weitere Informationen:
http://www.nioo.nl/cemo/bruva/bruva.htm

Weitere Berichte zu: Antarktisch Flechten Temperatur UV-Licht Vegetation

Weitere Nachrichten aus der Kategorie Ökologie Umwelt- Naturschutz:

nachricht Von der Weser bis zur Nordsee: PLAWES erforscht Mikroplastik-Kontaminationen in Ökosystemen
20.09.2017 | Universität Bayreuth

nachricht Der Monsun und die Treibhausgase
18.09.2017 | Forschungszentrum Jülich

Alle Nachrichten aus der Kategorie: Ökologie Umwelt- Naturschutz >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

Junge Physiologen Tagen in Jena

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

25.09.2017 | Messenachrichten

Fraunhofer ISE steigert Weltrekord für multikristalline Siliciumsolarzelle auf 22,3 Prozent

25.09.2017 | Energie und Elektrotechnik

Die Parkinson-Krankheit verstehen – und stoppen: aktuelle Fortschritte

25.09.2017 | Medizin Gesundheit