Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hauptproduzenten für Methan im Reisfeldboden entdeckt

12.08.2005


Marburger Max-Planck-Forscher identifizieren Mikroorganismen, deren Methanausstoß das globale Klima beeinflusst


Reisfelder auf den Philippinen. Batad, ein kleines Dorf inmitten von Reisfeldern, liegt im Norden von Luzon, Philippinen. Diese Gegend ist bekannt für ihre kunstvollen Reisterrassen und wird von vielen Touristen besucht. Bild: Max-Planck-Institut für terrestrische Mikrobiologie



Für etwa 10 bis 25 Prozent der weltweiten Methan-Emissionen sind Mikroorganismen in den Böden gefluteter Reisfelder verantwortlich. Der Kohlenstoff für das Methan stammt hauptsächlich aus Wurzeln und Pflanzenresten. Doch bisher war wenig über jene Mikroorganismen bekannt, die an dem Kohlenstoff-Kreislauf im Reisfeldboden beteiligt sind. Wissenschaftler des Max-Planck-Instituts für terrestrische Mikrobiologie in Marburg haben jetzt eine spezielle Gruppe von Archaea-Bakterien als Hauptlieferanten des Methans aus Reisfeldern identifiziert. Der Stoffwechsel dieser Bakterien-Gruppe ist offenbar von globaler Bedeutung für das Klima auf der Erde (Science, 12. August 2005).



Methan ist nach Kohlendioxid das zweitwichtigste Treibhausgas. Seine Konzentration in der Atmosphäre nimmt aufgrund menschlicher Aktivitäten immer weiter zu. Neben natürlichen Feuchtgebieten sind vor allem geflutete Reisfelder wichtige Quellen, die bis zu einem Viertel des Methanhaushalts in der Atmosphäre liefern. Dieses Methan wird in den gefluteten Böden von einer komplexen Gemeinschaft von Mikroorganismen gebildet, die gemeinsam organisches Material abbauen. Am Ende dieses komplexen Abbauprozesses stehen die so genannten methanogenen Archaea ("Archaebakterien"). Diese bilden Methan, indem sie entweder Acetat zu Methan und Kohlendioxid spalten oder Kohlendioxid mit Wasserstoff zu Methan reduzieren. Aus beiden Prozessen beziehen die Archaea ihre Lebensenergie. Acetat und Wasserstoff stammen aus dem Abbau von organischem Material, der von bakteriellen Gärungsorganismen geleistet wird.

Einen großen Teil des organischen Materials im Boden machen Wurzeln aus. Etwa 30-60 Prozent der Netto-Photosynthese der Pflanzen gelangt in die Wurzeln, und davon werden etwa 40-90 Prozent in den Boden ausgeschieden bzw. gelangen als abgestorbene Wurzeln dorthin. In den Reisfeldern sind die im Wurzelbereich lebenden Mikroorganismen von entscheidender Bedeutung für die Emission von Methan. Japanische Forscher hatten bereits gezeigt, dass in Reisfeldern bis zu 50 Prozent des emittierten Methans aus der Photosynthese der Reispflanzen stammt. Frühere Arbeiten der Marburger Forscher zeigen, dass das aus Wurzeln von Reispflanzen gebildetes Methan überwiegend durch die Reduktion von Kohlendioxid (mit Wassertoff) entsteht und dass im Wurzelbereich verschiedene Arten methanogener Archaea vorkommen. Doch welche dieser Bakterien für die Methanbildung verantwortlich sind, war bisher nicht bekannt.

Um dies herauszufinden, haben die Max-Planck-Forscher Töpfe mit geflutetem Reisfeldboden im Gewächshaus mit 13C-markierten Kohlendioxid begast, so dass die Photosyntheseprodukte der Reispflanzen ebenfalls mit dem schweren 13C-Kohlenstoffisotop markiert wurden. Wie erwartet bildete sich aus diesen schweren Photosyntheseprodukten schweres Methan, das in die Atmosphäre entweicht. Mindestens 15 Prozent dieses Methans stammte aus der Photosynthese.

Doch nicht nur das Methan sondern auch die methanbildenden Archaea wurden durch die Photosyntheseprodukte mit schwerem Kohlenstoff markiert. Dies konnten die Wissenschaftler durch die Analyse einer für die Taxonomie charakteristischen Verbindung, der ribosomalen RNA, feststellen. Hierzu haben sie die ribosomale RNA aller Bodenmikroorganismen dem durchwurzelten Boden entnommen und alle Anteile, die mit schwerem Kohlenstoff markiert waren, mittels Dichtegradienten-Zentrifugation abgetrennt. Die auf diese Weise abgetrennte schwere ribosomale RNA konnte danach molekular charakterisiert werden - durch Analyse des terminalen Restriktionslängen-Polymorphismus und durch Klonierung und Sequenzierung der ribosomalen RNA.

Dabei zeigte sich, dass nur eine bestimmte Gruppe von Archaea mit dem schweren Kohlenstoff markiert war, nämlich die so genannten Rice-Cluster-I (RC-I)-Archaea. Demnach haben diese Archaea den über die Pflanzen in Form von 13CO2 applizierten schweren Kohlenstoff eingebaut. Die RC-I-Archaea sind eine Gruppe von bislang nicht isolierten methanogenen Archaea. Interesanterweise ist es gerade diese Gruppe, die offensichtlich als Hauptproduzent von Methan in Reisfeldern fungiert.

Andere, wesentlich besser beschriebene methanogene Gruppen, wie die Methanosarcinen oder Methanobakterien, kommen zwar ebenfalls im durchwurzelten Reisfeldboden vor, sind jedoch, wie die Versuche jetzt gezeigt haben, nicht nennenswert an der Umsetzung von Photosyntheseprodukten beteiligt. Die Forscher nehmen an, dass sie stattdessen an der Umsetzung von Stroh mitwirken, das erst nach dem Umpflügen in den Reisfeldboden gelangt und dort letztendlich auch zu Methan abgebaut wird.

Von den bislang nicht isolierten und somit physiologisch wenig charakterisierten RC-I Archaea existiert zur Zeit lediglich eine Anreicherungskultur. Die Marburger Wissenschaftler sind jetzt dabei, das Genom dieser angereicherten RC-I-Archaea zu sequenzieren. Sie wollen dadurch einen besseren Einblick in die Fähigkeiten dieser für die Methanemission aus Reisfeldern wichtigen Mikrobengruppe erhalten.

Das Projekt wurde durch die Max-Planck-Gesellschaft sowie die Deutsche Forschungsgemeinschaft unterstützt.

Originalveröffentlichung: Yahai Lu and Ralf Conrad
In Situ Stable Isotope Probing of Methanogenic Archaea in the Rice Rhizosphere
Science, 12 August 2005

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Archaea Kohlendioxid Kohlenstoff Methan Mikroorganismus RNA Reisfeldboden Reisfelder Wurzel

Weitere Nachrichten aus der Kategorie Ökologie Umwelt- Naturschutz:

nachricht Von der Weser bis zur Nordsee: PLAWES erforscht Mikroplastik-Kontaminationen in Ökosystemen
20.09.2017 | Universität Bayreuth

nachricht Der Monsun und die Treibhausgase
18.09.2017 | Forschungszentrum Jülich

Alle Nachrichten aus der Kategorie: Ökologie Umwelt- Naturschutz >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Legionellen? Nein danke!

25.09.2017 | Veranstaltungsnachrichten

Hochvolt-Lösungen für die nächste Fahrzeuggeneration!

25.09.2017 | Seminare Workshops

Seminar zum 3D-Drucken am Direct Manufacturing Center am

25.09.2017 | Seminare Workshops