Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Von der Altlast zum natürlichen See

31.08.2004


Wasser aus der Schwelwasserdeponie vor und nach der Sanierung


Die Sanierung einer spektakulären Altlast ist erfolgreich beendet. Wissenschaftler des Umweltforschungszentrums Leipzig-Halle haben bewiesen: Durch die Aktivierung der natürlichen Selbstreinigung können selbst aus hochtoxischen Altlasten, die unter ökonomischen Aspekten als nicht sanierbar gelten, wieder naturnahe Lebensräume werden.


Wasser aus der Schwelwasserdeponie vor und nach der Sanierung

"Unseres Wissens", so Professor Ulrich Stottmeister, Projektkoordinator und Leiter des Departments Umweltbiotechnologie am UFZ, "ist dies das erste realisierte Beispiel, bei dem eine Altlast derartiger Dimension auf wissenschaftlicher Grundlage und in interdisziplinärer Zusammenarbeit von Umweltbiotechnologen, Chemikern, Geologen, Hydrogeologen, Gewässerkundlern, Hydrobiologen sowie Mikrobiologen gezielt einer Selbstreinigung zugeführt wurde".


Ende August 2004 wurden Ausrüstung und Technik, die an das 1992 begonnene Forschungs- und Sanierungsprojekt "Phenolsee" erinnern, abgebaut. Die Nachhaltigkeit des Sanierungserfolges wird aber auch weiterhin durch UFZ-Wissenschaftler beobachtet und dokumentiert.

Die Altlast

In unmittelbarer Nähe des Dorfes Trebnitz, einer kleinen Gemeinde zwischen Zeitz und Weißenfels in Sachsen-Anhalt, wurde nach der Wende eine der spektakulärsten Altlasten auf dem Territorium der ehemaligen DDR "entdeckt". Hoch konzentrierte phenolische Abwässer der Braunkohlen-Verschwelung des Werkes Deuben bei Zeitz wurden zwischen 1950 und 1968 in einen ehemaligen Tagebau geleitet. Es entstand ein See mit 2 Millionen Kubikmetern Inhalt, einer Fläche von 9 Hektar und einer Tiefe bis zu 27 m. Der Gestank des fast schwarzen und stark kontaminierten "Wassers" belästigte die Anwohner und war zudem ungesund. Die Sichttiefe betrug gerade mal drei Zentimeter, der Sauerstoffgehalt war gleich Null und Grundwasserkontaminationen konnten nicht ausgeschlossen werden. Eine praktikable und bezahlbare Sanierung (die Kostenschätzungen verschiedener Firmen bewegte sich im zwei- und dreistelligen Millionenbereich) erschien bei dieser Dimension und der Besonderheit der Schadstoffe unmöglich - zumindest mit herkömmlicher Sanierungstechnik.

Das UFZ-Sanierungskonzept

Ab 1992 entwickelten Wissenschaftler des UFZ für diese Altlast ein Sanierungskonzept, das mit finanzieller Hilfe der LMBV (Lausitzer und Mitteldeutsche Bergbauverwaltungsgesellschaft) und der Aufgeschlossenheit genehmigender Behörden des Landes Sachsen-Anhalt verwirklicht werden konnte. Sanierungsziel: Ein naturnahes Ökosystem, von dem keine Gefährdungen für Mensch und Umwelt mehr ausgehen.

Die Grundidee war, in dieser hochtoxischen Industriealtlast die natürliche Selbstreinigung zu initiieren und so zu steuern, dass ein ungefährliches Ökosystem entsteht. Dazu sollten die stark gehemmten und außerordentlich langsam verlaufenden biologischen Abbauprozesse durch einfache technische Maßnahmen unterstützt werden, denn trotz des hohen Gehaltes an giftigen Substanzen - vorherrschend Phenole und Ammonium - war das Wasser keineswegs biologisch tot - es wurden Mikroorganismen nachgewiesen. Für diese Art der Sanierung verwendet man auch Begriffe wie "ökotechnische" Sanierung oder "bioremediation", auch "enhanced natural attenuation".

Das Sanierungskonzept sah vor, die schwer abbaubaren huminstoffähnlichen Polymerverbindungen, die für die Schwarzfärbung des Deponiewassers verantwortlich waren, aus dem Wasserkörper durch eine einfache Flockung mit Eisen-III-Salzen zu beseitigen. Setzen sich die Flocken am Seeboden ab, wird das Deponiewasser klar und ungefärbt, gleichzeitig werden 50 Prozent der ursprünglichen organischen Verbindungen gebunden. Steigt die Sichttiefe auf mehrere Meter an, kann dass das Sonnenlicht besser in die oberen Wasserschichten eindringen. Die Folge: das Wasser erwärmt sich in Abhängigkeit von den Jahreszeiten, die Mikroorganismen werden aktiv, der Sauerstoffgehalt in den oberen Wasserschichten nimmt durch die Photosynthese von Algen allmählich zu.
Getestet wurde zunächst im Labor, danach folgten Versuche in verschieden großen Maßstäben im See. Dazu nutzten die Wissenschaftler so genannte Enclosures. Das sind unterschiedlich große, schwimmende Folienschläuche, die als geschlossene Experimentalgefäße im See - in situ - dienen.

Der Erfolg dieser Tests im See und die vergleichsweise niedrigen Sanierungskosten waren für die LMBV überzeugend - sie übernahm sie die Finanzierung (zirka sechs Millionen Euro) für die Behandlung der gesamten Deponie. Nach Vorgaben des UFZ wurde in einer logistischen Meisterleistung unter Nutzung spezieller Injektionstechnologien der gesamte See geflockt (1997), neutralisiert (1997) und mit Nährstoffen für die Mikroorganismen ergänzt (1998).

Das Gewässer heute

Bis heute ist ein belebtes naturnahes Ökosystem entstanden, dessen Wasser gegenüber Bakterien, Algen und niederen Wasserlebewesen - dazu zählen Räder- und Wimperntiere, Stech- und Büschelmückenlarven sowie Zuckmücken - nicht mehr giftig ist. Diese neue biologische Vielfalt, die sich in der sauerstoffreichen Oberflächenzone heute nicht mehr von der eines natürlichen Sees unterscheidet, sorgt dafür, dass nach und nach die restlichen gelösten organischen Schadstoffe sowie der Ammoniumstickstoff abgebaut werden. Letzterer ist die Ursache dafür, dass man auf Fische noch viele Jahrzehnte warten muss, denn dieser ist für sie schon in sehr geringen Konzentrationen giftig. Wasservögel hingegen haben das Ökosystem inzwischen akzeptiert.

Für die Trebnitzer Bevölkerung geht der Erfolg des Projektes mit der Verbesserung ihrer Lebensqualität einher. Die Freude darüber haben zahlreiche Einwohner und ihr Bürgermeister vielfach gegenüber den UFZ-Projektleitern Ulrich Stottmeister und Erika Weißbrodt zum Ausdruck gebracht. Doris Böhme, UFZ, 31. August 2004

Fachliche Ansprechpartner UFZ:
Prof. Dr. Ulrich Stottmeister Telefon: 0341/235-2220, e-mail: ulrich.stottmeister@ufz.de
Erika Weißbrodt Telefon: 0341/235-2821, e-mail: erika.weissbrodt@ufz.de

Susanne Hufe | idw
Weitere Informationen:
http://www.ufz.de

Weitere Berichte zu: Altlast Mikroorganismus Selbstreinigung UFZ Ökosystem

Weitere Nachrichten aus der Kategorie Ökologie Umwelt- Naturschutz:

nachricht Von der Weser bis zur Nordsee: PLAWES erforscht Mikroplastik-Kontaminationen in Ökosystemen
20.09.2017 | Universität Bayreuth

nachricht Der Monsun und die Treibhausgase
18.09.2017 | Forschungszentrum Jülich

Alle Nachrichten aus der Kategorie: Ökologie Umwelt- Naturschutz >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Legionellen? Nein danke!

25.09.2017 | Veranstaltungsnachrichten

Hochvolt-Lösungen für die nächste Fahrzeuggeneration!

25.09.2017 | Seminare Workshops

Seminar zum 3D-Drucken am Direct Manufacturing Center am

25.09.2017 | Seminare Workshops