Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Luftiger Fingerabdruck - Ursprungsanalyse für Feinstaub

11.05.2004


Ab 2005 müssen Städte dafür sorgen, dass auch Grenzwerte für Feinstaub überall im Stadtgebiet eingehalten werden, die durch die EU-Rahmenrichtlinie Luftqualität vorgegeben sind und in Zukunft weiter verschärft werden. Um Überschreitungen zu vermeiden, muss man wissen, woher die Luftverschmutzung stammt. Dr. Eberhard Reimer, Leiter der Troposphärischen Umweltforschung (TrUmF) am Institut für Meteorologie der Freien Universität Berlin (FU), verfolgt die Luftwege der Staubpartikel bis zu ihrem Ursprung. Mit ihren Modellrechnungen und Analysen liefern die Dahlemer Meteorologen Planungsgrundlagen für den Berliner Senat. Im Forschungsprojekt HOVERT (HOVERT, Horizontal-/Vertikaltransport, wird vom Bundesministerium für Bildung und Forschung (BMBF) gefördert und ist Teil des Atmosphären-Forschungs-Programms des BMBF), das in Kooperation mit einem Messprojekt des Senats von Berlin durchgeführt wird, wird der vertikale Luftaustausch und der Ferntransport von Ozon und Feinstaub sowie die Konsequenzen für den Ballungsraum Berlin untersucht. Jetzt wurden die Daten des einjährigen Messprogramms (September 2001 bis Oktober 2002) veröffentlicht. Vorläufiges Fazit: Überschreitungen der Feinstaubgrenzwerte werden hauptsächlich durch den Berliner Straßenverkehr erwartet.


Feinstaub ist extrem klein, die Partikel haben einen Durchmesser von wenigen tausendstel Millimetern. Weil die Schwebstoffe tief in die Lunge eindringen können, sind sie ein gesundheitliches Risiko. Sie werden zum Beispiel primär aus Schornsteinen und Auspuffrohren in die Atmosphäre gepustet oder entstehen in der Landwirtschaft, als Abrieb von Autoreifen und Straßenbelag. Außerdem bilden sie sich aus Gasen wie Schwefeloxiden, Stickoxiden oder Ammoniak. Reimer und seine Kollegen beschäftigen sich mit Feinstaubpartikeln bis zu einem Durchmesser von zehn Mikrometern; diese Kategorie wird international als PM10 (particulate matter kleiner-gleich 10 µm) bezeichnet. Gehen nun diese Aerosole in das städtische Messnetz, handelt es sich entweder um lokale oder mit den Windströmungen importierte Emissionen. In chemischen Analysen finden sich Bestandteile wie Nitrat und Sulfat, aber auch Eisen, Blei und Ruß. Diese Schadstofffraktionen sind für Reimer Indizien für die Herkunft der Schadstoffe. "Luftmassen bekommen auf Grund ihres Weges einen bestimmten chemischen Charakter. So hat jede Region ihren eigenen Fingerabdruck", erklärt der Atmosphärenexperte und gibt ein Beispiel: "Natrium, Chlor und Magnesium sind Seesalzprodukte, die auch bei uns gemessen werden können. Das ist typisch, wenn der Wind aus Richtung Nordsee und Atlantik kommt." Der in Berlin entstandene oder hierher transportierte Feinstaub landet auch auf den Straßen, wo er durch den rollenden Verkehr wieder aufgewirbelt wird und Anwohner oder Passanten ein zweites Mal belasten kann.

Für die Identifizierung der Emissionsorte benutzt Reimer Daten aus dem Berliner Messnetz, Wetterbeobachtungen und Trajektorien. Letztere sind Luftbahnen, auf denen sich definierte Luftpakete bewegen. Am Computer können Trajektorien mit den meteorologischen Daten über mehrere Tage rückwärts verfolgt werden. Reimer startet seine Rechnung zum Beispiel an der Messstation in Neukölln, weil hier erhöhte Schwefelwerte festgestellt wurden. Auf Grund der gemeldeten Windrichtung gelangt er nach Südosten in die polnische Industrieregion von Katowice. Während seiner meteorologischen Zeitreise beobachtet Reimer genau die vertikalen Luftbewegungen, denn die betrachteten Luftpakete können nur dann Schadstoffe aufnehmen, wenn sie in Bodennähe gelangen. Da der Wissenschaftler ungefähr weiß, wer was in Europa in die Atmosphäre entlässt, kann er schließlich feststellen, ob der Verursacher der in Neukölln gemessenen Luftverschmutzung brandenburgische Landwirte oder polnische Industriebetriebe sind. Die Berechnungen ermöglichten auch, in Verbindung mit meteorologisch/chemischen Modellen, Aerosolvorhersagen, wie es für Ozon bereits üblich ist, so Reimer.


Die Berliner Luft wird je nach Wetterlage und Standort (Außenbezirk oder Innenstadt) bis je zu fünfzig Prozent mit importiertem und lokal emittiertem Feinstaub belastet. Nachdem die Belastungen aus Industrieanlagen und Kohleheizungen seit etwa 1990 zurückgingen, bleibt als Hauptverursacher der hausgemachten Luftverschmutzung der Straßenverkehr. Nach den Messungen und der jetzigen ersten Auswertungen der HOVERT-Daten, sollen die endgültigen Analysen im August dieses Jahres vorliegen. Dabei werden unter Einbeziehung von chemischen Modellen die Schadstoffemission, deren Export aus und der Eintrag nach Berlin aufgeschlüsselt. Ziel der detaillierten Zuordnung ist es, die Maßnahmenplanung der Berliner Verwaltung zur Luftreinhaltung zu unterstützen. Schon jetzt geht Eberhard Reimer davon aus, dass gegen Grenzwertüberschreitungen hauptsächlich beim Berliner Verkehr und zum Beispiel bei den Dieselrußpartikeln angesetzt werden muss.

Weitere Informationen erteilt Ihnen gern:
Dr. Eberhard Reimer, Troposphärische Umweltforschung (TrUmF), Institut für Meteorologie der Freien Universität Berlin, Tel.: 030 / 838-71190, E-Mail: trumf@zedat.fu-berlin.de

Ilka Seer | idw
Weitere Informationen:
http://secus.met.fu-berlin.de

Weitere Berichte zu: Feinstaub Fingerabdruck Luftverschmutzung

Weitere Nachrichten aus der Kategorie Ökologie Umwelt- Naturschutz:

nachricht Die Zerschneidung der Tropenwälder steigert den Ausstoß von Treibhausgasen um weiteres Drittel
30.03.2017 | Helmholtz-Zentrum für Umweltforschung - UFZ

nachricht Energieträger: Biogene Reststoffe effizienter nutzen
29.03.2017 | Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

Alle Nachrichten aus der Kategorie: Ökologie Umwelt- Naturschutz >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Herzerkrankungen: Wenn weniger mehr ist

30.03.2017 | Medizin Gesundheit

Flipper auf atomarem Niveau

30.03.2017 | Physik Astronomie

Europaweite Studie zu „Smart Engineering“

30.03.2017 | Studien Analysen