Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Optimale Lebensbedingungen für Chemikalienfresser

12.04.2001


... mehr zu:
»Bakterium »Chlorbenzol
GBF identifiziert Bodenbakterien für den Abbau von giftigem Chlorbenzol
Wissenschaftler der Gesellschaft für Biotechnologische Forschung (GBF)
haben Bakterien identifiziert, die krebserregendes Chlorbenzol aus der Umwelt entfernen können. In einer Pilotanlage sollen nun die Bedingungen ermittelt werden, bei denen die natürlichen oder gentechnisch veränderten Mikroorganismen belastetes Grundwasser besonders gut reinigen. Hilfe können die Forscher damit dem Raum Bitterfeld bringen: Dort sind riesige Gebiete mit Chlorbenzol aus der Fotoindustrie verseucht.

Das Team um Dr. Dirk Wenderoth von der Arbeitsgruppe Mikrobielle Ökologie der GBF hat herausgefunden, dass bereits die von Natur aus im Boden lebenden Mikroorganismen der Gattung Pseudomonas zum Abbau von Chlorbenzol angeregt werden können. Dies funktioniert allerdings nur, wenn die Zahl der Bakterien mit im Labor gezüchteten Kulturen künstlich erhöht wird. Am effektivsten haben sich dabei gentechnisch modifizierte Bakterienstämme erwiesen: In 20 Tagen können sie ein verseuchtes Wasser-Boden-Gemisch vollständig von Chlorbenzol befreien.

In der rund 100.000 Mark teuren Pilotanlage der GBF soll jetzt ermittelt werden, welche Zusammensetzung die Gemeinschaft der Mikroorganismen haben muss, damit das Reinigungsverfahren optimal funktioniert. Dazu arbeitet die GBF mit Kooperationspartnern - vor allem dem Umweltforschungszentrum in Leipzig und dem GSF-Forschungszentrum für Gesundheit und Umwelt in München - zusammen. Kernstück der Versuchsanordnung sind einen halben Meter lange Stahlrohre. Gefüllt sind sie mit einer acht Zentimeter starken Säule aus Erdreich und Grundwasser der Bitterfelder Region. Dieses Gemisch bildet den natürlichen Lebensraum der Bodenbakterien nach. Kontinuierlich läuft Grundwasser im selben Maße durch die Rohre hindurch, wie dies im Boden unter dem Ort Bitterfeld der Fall ist. Die biologischen und chemischen Zustände in den Versuchsrohren kann Wenderoth sehr genau steuern und online überprüfen. Sobald er und sein Team ermittelt haben, welche Bakterien am besten zusammenarbeiten, werden diese Ergebnisse bei der Bodensanierung in Bitterfeld angewendet.

Diese Stimulation einer Bakteriengemeinschaft zeigt die Fähigkeit einfacher Organismen zu Wechselwirkung und Kommunikation. "Wir haben hier ein gutes Beispiel dafür, wie Bakterien sich untereinander verständigen und auf äußere Einflüsse reagieren. Solche Mechanismen wollen wir in Zukunft auf verschiedenen Forschungsfeldern untersuchen", erklärt Prof. Dr. Rudi Balling, wissenschaftlicher Geschäftsführer der GBF.

Dipl.-Biol./Dipl.-Journ. Thomas Gazlig | idw

Weitere Berichte zu: Bakterium Chlorbenzol

Weitere Nachrichten aus der Kategorie Ökologie Umwelt- Naturschutz:

nachricht Von der Weser bis zur Nordsee: PLAWES erforscht Mikroplastik-Kontaminationen in Ökosystemen
20.09.2017 | Universität Bayreuth

nachricht Der Monsun und die Treibhausgase
18.09.2017 | Forschungszentrum Jülich

Alle Nachrichten aus der Kategorie: Ökologie Umwelt- Naturschutz >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie