Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 


Some re-established elk herds lack genetic diversity of ancestors


Continued monitoring is central to maintaining genetic diversity, which is the key to long-term success of animal reintroduction programs, according to research at Purdue University.

Purdue researcher Gene Rhodes examines an X-ray printout of an elk’s genetic makeup. Research conducted by Rhodes, a wildlife geneticist, found that elk relocated to depleted areas lost significant amounts of genetic diversity when only a few individuals were introduced to a new area or herds were not managed appropriately. (Purdue Agricultural Communications photo/Tom Campbell)

A team of researchers found that elk relocated to depleted areas lost significant amounts of diversity when only a few individuals were introduced to a new area or herds were not managed appropriately. Their findings could aid in the design of future wildlife management programs.

... mehr zu:

"Any new reintroductions that are performed need to take into consideration that how you manage those animals after you relocate them is just as important as it is to put them there in the first place," said Gene Rhodes, Purdue wildlife geneticist.

"Despite the fact that elk have been moved all over the United States, no one has looked at the effects of those reintroductions. These studies add to a growing body of literature that deals with reintroductions in general, and the genetic results of reintroductions of large animals."

Elk once roamed across most of North America, but extensive hunting and habitat loss throughout the 1800s nearly wiped out the species from much of its range. In the late 1800s, wildlife managers began transporting elk from large, stable herds in western states to locations throughout Canada, Mexico and other parts of the United States with the goal of restoring elk to parts of its historic range.

Those reintroduction programs met with variable levels of success, and in one study, published in Molecular Ecology, Rhodes and his colleagues compared the genetics of a reintroduced herd in Pennsylvania with the genetics of its source herds in Wyoming and South Dakota. Pennsylvania elk were hunted to extinction by the late 1800s, and in the early 1900s, wildlife managers in Wyoming and Colorado began shipping elk by train to Pennsylvania where the animals were released in the hope of restoring the species.

In a second study to be published in the January Journal of Wildlife Management, the researchers assessed genetic variation in California’s Tule elk. Tule elk were not reintroduced from out-of-state herds, but early in the 20th century the small number of individuals remaining in California were used to re-establish Tule elk within the state.

Both the Pennsylvania and Tule elk studies show a significant loss of genetic diversity can occur in the course of reintroduction programs and during the time after the animals are released.

In both of these studies, Rhodes and his colleagues used a genetic technique that has become a popular component of the wildlife biologist’s toolkit: DNA microsatellite analysis. Microsatellites, which are often used in human genetic studies, are short, repetitive pieces of DNA that are passed down from parents to offspring.

Unlike genes, microsatellites typically do not code for any specific information. Instead, scientists consider them to be neutral markers that indicate an organism’s overall genetic diversity. They also can be used to infer aspects of a population’s history.

"We use microsatellites as a kind of flag, a marker for what a population has gone through in the past," Rhodes said.

Wildlife biologists today use microsatellites to study a host of population parameters, including animal migration patterns, parentage in animal populations, and, like Rhodes, the genetic history of groups of reintroduced animals.

The extremely limited microsatellite variation Rhodes and his colleagues found among elk in Pennsylvania and California confirms that both groups of elk have experienced what conservation biologists call a bottleneck.

During a bottleneck, the numbers in a population decrease to extremely low levels, and later return to higher levels as the population begins to recover. The individuals that survive the bottleneck represent a decrease in genetic diversity that is passed on as the population rebounds.

One consequence of the decrease in a population’s genetic diversity is that it may become difficult for populations to adapt to changing conditions.

"Genetic variation is the buffer against environmental change," Rhodes said. "If you have very limited genetic diversity, you may not have the genetic potential to respond if the environment changes."

Reintroducing a population of animals may simulate a bottleneck effect, especially if the reintroduction is done with a small number of animals or if the animals used represent only a small subset of the original genetic diversity present in the source herd.

Herd management is the key to minimizing the losses in diversity that may accompany reintroduction programs, the researchers said.

"The best effort we can do is to bring in lots of animals when setting up a reintroduction," said Christen Lenney Williams, who worked on the study as a postdoctoral researcher and is now a wildlife geneticist with the National Wildlife Research Center in Colorado. "In certain situations, we may also improve diversity by bringing in animals from a variety of herds. In other cases, moving animals between reintroduced herds may also help."

Williams also pointed out the financial reality of putting together a successful reintroduction program.

"If the time and money it takes to release an animal are going to be well-spent, then money should also be set aside for some post-release monitoring of the herd," she said.

"That’s probably one of the biggest problems in some of the release programs, not just in elk, but other species as well. Once the animals have been released, the post-release monitoring hasn’t had as much funding as it probably needed."

Other researchers who collaborated on these studies were Rawland Cogan, senior development officer with the Rocky Mountain Elk Foundation; Barbara Lundrigan, assistant professor of zoology at Michigan State University; and Thomas L. Serfass, associate professor of biology at Frostburg State University in Maryland.

The Rocky Mountain Elk Foundation and the Smithsonian Institution provided funding for these studies.

Writer: Jennifer Cutraro, (765) 496-2050,

Sources: Gene Rhodes, (765) 414-3211,

Christen Lenney Williams, (970) 266-6142,

Ag Communications: (765) 494-2722; Beth Forbes,

Jennifer Cutraro | Purdue News
Weitere Informationen:

Weitere Berichte zu: Pennsylvania

Weitere Nachrichten aus der Kategorie Ökologie Umwelt- Naturschutz:

nachricht Online-Karten: Schweinswale und Seevögel in Nord- und Ostsee
15.12.2017 | Bundesamt für Naturschutz

nachricht Wie Brände die Tundra langfristig verändern
12.12.2017 | Gesellschaft für Ökologie e.V.

Alle Nachrichten aus der Kategorie: Ökologie Umwelt- Naturschutz >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunsystem - Blutplättchen können mehr als bislang bekannt

LMU-Mediziner zeigen eine wichtige Funktion von Blutplättchen auf: Sie bewegen sich aktiv und interagieren mit Erregern.

Die aktive Rolle von Blutplättchen bei der Immunabwehr wurde bislang unterschätzt: Sie übernehmen mehr Funktionen als bekannt war. Das zeigt eine Studie von...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Alle Focus-News des Innovations-reports >>>



im innovations-report
in Kooperation mit academics

Call for Contributions: Tagung „Lehren und Lernen mit digitalen Medien“

15.12.2017 | Veranstaltungen

Die Stadt der Zukunft nachhaltig(er) gestalten: inter 3 stellt Projekte auf Konferenz vor

15.12.2017 | Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

Weitere VideoLinks >>>
Aktuelle Beiträge

Weltrekord: Jülicher Forscher simulieren Quantencomputer mit 46 Qubits

15.12.2017 | Informationstechnologie

Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke

15.12.2017 | Verfahrenstechnologie

Forscher vereinfachen Installation und Programmierung von Robotersystemen

15.12.2017 | Energie und Elektrotechnik