Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nur "saubere" Wasserstoffwirtschaft hilft Weltklima stabilisieren

24.10.2003


Reduktion des bodennahen Ozons über Europa bei weltweiter Umstellung des Verkehrs auf Wasserstofftechnologie in den Sommermonaten Juni bis August.

Bild: Max-Planck-Institut für Meteorologie


Neues Computermodell des Max-Planck-Instituts für Meteorologie zeigt: Massiver Einsatz von Wasserstoff-Brennstoffzellen könnte weltweit für sauberere Luft sorgen und bei der Umsetzung des Kyoto-Protokolls helfen


Der motorisierte Verkehr hat einen erheblichen Anteil am Ausstoß von Luftschadstoffen. Die Emissionen von Kohlenmonoxid und Stickoxiden könnten jedoch um fast die Hälfte reduziert werden, wenn der gesamte bodengebundene Verkehr auf Wasserstofftechnologie umgestellt und der Wasserstoff vollständig aus erneuerbaren und emissionsneutralen Quellen gewonnen würde. Die Umstellung auf Wasserstoff würde auch zu einer deutlichen Verringerung des globalen Temperaturanstiegs aufgrund von Treibhausgasen führen, da die CO2-Emissionen um etwa 20 Prozent sinken würden. Doch inwieweit dieses Potential ausgeschöpft werden kann, hängt entscheidend davon ab, auf welche Weise der Wasserstoff produziert wird. Im ungünstigsten Falle, also bei der elektrischen Spaltung von Wasser mit Strom aus Kohlekraftwerken, käme es nicht zu einer Entlastung, sondern zu einer deutlich stärkeren Belastung des Klimasystems. Ein entscheidender Parameter für die Klimawirksamkeit der Verkehrsumstellung auf Wasserstoff sind die dadurch sinkenden Stickoxid-Emissionen. Diese führen zum einen zu einer erheblichen Reduktion der Ozonbelastung (Sommersmog), zum anderen jedoch auch zu einer Verlängerung der Lebensdauer von Methan in der Atmosphäre und damit zu einer Verstärkung des Treibhauseffekts. Zu diesem Ergebnis kommen Wissenschaftler des Hamburger Max-Planck-Institut für Meteorologie und der Ludwig-Bölkow-Systemtechnik GmbH Ottobrunn mit Hilfe aufwändiger globaler Computermodelle. Hingegen hat der in einer globalen Wasserstoffwirtschaft mögliche Anstieg der Wasserstoffkonzentration in der Atmosphäre aller Voraussicht nach keine bedeutenden Auswirkungen auf das Klima oder die Luftverschmutzung.

Heute ist weitestgehend anerkannt, dass der wachsende Verbrauch fossiler Brennstoffe seit der Industrialisierung der westlichen Welt zu unvorhersehbaren Veränderungen in der chemischen Zusammensetzung der Erdatmosphäre geführt hat, mit vielfältigen Konsequenzen für die regionale Luftqualität und das globale Klimasystem. Beispielsweise ist trotz der Anstrengungen vieler Länder, die Emission von Auto- und Industrieabgasen zu kontrollieren, die Konzentration von Ozon in der Troposphäre auch nach 1985 nicht zurückgegangen, als die Autokatalysatoren in den USA und Europa eingeführt wurden. Im Gegenteil, viele Regionen der Welt haben im vergangenen Jahrzehnt eine ernsthafte Verschlechterung der Luftqualität infolge verstärkten motorisierten Verkehrs und industrieller Abgase hinnehmen müssen.


Seit den 1980er Jahren wird deshalb weltweit nach Alternativen gesucht, wie der steigende Energiebedarf umweltfreundlicher bedient werden könnte. Angesichts der Anforderungen einer mobilen Gesellschaft und der jüngsten Fortschritte in der Brennstoffzellen-Technologie erscheint der Einsatz von Wasserstoff (H2) aus erneuerbaren Quellen die vielversprechendste Ansatz. Doch auch wenn die Wasserstoff-Brennstoffzelle selbst eine "saubere" Technologie ist, die als Abgas nur Wasserdampf erzeugt, müssen auch die Emissionen von Treibhausgasen und Ozon-Vorläufersubstanzen bei der Herstellung von Wasserstoff berücksichtigt werden. Mehr noch, auch die Freisetzung von molekularem Wasserstoff in die Atmosphäre könnte steigen - durch das Ausströmen bei Produktion, Transport, Lagerung und Nutzung.

Um zu einer quantitativen Schätzung zu kommen, welche Auswirkungen eine Wasserstoff-Wirtschaft auf die Luftchemie in der Troposphäre und damit auf die Belastung des Weltklimas hätte, haben Wissenschaftler des Max-Planck-Instituts für Meteorologie ein dreidimensionales globales Luftchemie-Modell entwickelt, das auch die vielfältigen Feedback-Mechanismen im Zusammenhang mit der OH-Konzentration in der Troposphäre berücksichtigt. Unterschiedliche Szenarios wurden für einen Zeitraum von zehn Jahren simuliert, immer unter der Annahme, dass 50 Prozent des heutigen Verbrauchs an fossilen Brennstoffen (das entspricht in etwa dem Anteil des Verkehrs an diesen Emissionen) durch Wasserstoff-Technologie ersetzt werden, und dass der Wasserstoff komplett durch emissionsfreie Technologien (aus Solarenergie, Wind- oder Wasserkraft, geothermaler oder nuklearer Energie) erzeugt wird.

"Auch wenn uns klar ist, wie stark vereinfacht unsere Modelle noch sind, so läßt sich doch schon abschätzen, welche Auswirkungen eine globale Wasserstoffwirtschaft auf das Klimasystem hätte," meint Martin Schultz, Arbeitsgruppenleiter am Max-Planck-Institut für Meteorologie und Erstautor der Klimastudie. "Auf den motorisierten Verkehr kommen heute etwa 20 Prozent der globalen Kohlendioxid-Emissionen, so dass die Zunahme des Strahlungsantriebs der Atmosphäre durch Kohlendioxid in unserem Wasserstoff-Szenario substantiell verringert werden könnte. Doch andererseits würde die Lebensdauer von Methan (und damit letztendlich die Methankonzentration) wegen der verringerten OH-Konzentration in der Troposphäre um mehr als 20 Prozent ansteigen."

Der Übergang von einer fossilen Brennstoff- zu einer Wasserstoff-Wirtschaft wird sich weltweit nicht auf einen Schlag und nicht nur mit emissionsfreien Technologien vollziehen. In Frage kommen vielmehr die Hydrolyse mit Hilfe von Strom aus Kohle, die Vergasung von Kohle oder erneuerbaren biologischen Brennstoffen, oder die Reformierung von Erdgas. Selbst wenn bei all diesen Technologien die Emissionen von Kohlenmonoxid und vielleicht auch von Stickoxiden kontrolliert werden könnte, die Freisetzung von Kohlendioxid und Methan würde die durch die Wasserstoff-Brennstoffzellen eingesparten Emissionen dieser Gase in Bezug auf die Klimawirksamkeit wieder neutralisieren. "Folglich könnte die Klimabelastung in einer Wasserstoff-Wirtschaft noch steigen, wenn die Emissionen bei der Produktion von Wasserstoff nicht kontrolliert bzw. reguliert werden" meint Schultz.

Letztlich aber, so zeigen die Hamburger Modellrechnungen, könnte der großflächige Übergang zur Wasserstoff-Wirtschaft zu einer substantiellen Verbesserung der Luftqualität und einer reduzierten Klimabelastung führen – immer unter der Voraussetzung, dass der Wasserstoff ohne zusätzliche Emissionen von Ozon-Vorläufern und Treibhausgasen erzeugt wird. Doch noch enthalten diese Simulationen viele Unsicherheiten, auch hinsichtlich der tatsächlich eingesetzten Technologien zur Wasserstoffproduktion. Welche Auswirkungen eine weitverbreitete Wasserstoff-Wirtschaft tatsächlich auf die Erdatmosphäre hätte, hängt entscheidend ab von den damit einhergehenden Veränderungen bei Methan- und Stickoxid-Emissionen. Selbst wenn die Methan-Emissionen möglicherweise konstant bleiben, wird durch die Verringerung der Stickoxide zwar weniger Ozon in der Troposphäre gebildet, doch damit zugleich die Oxidationskraft der Atmosphäre geschwächt, was die Klimabelastung durch Methan und andere Treibhausgase weiter verstärken könnte.

Weitere Informationen erhalten Sie von:

Dr. Martin Schultz
Max-Planck-Institut für Meteorologie, Hamburg
Tel.: 040 41173 - 308, Fax: - 298
E-Mail: martin.schultz@dkrz.de

Dr. Martin Schultz | Max-Planck-Gesellschaft

Weitere Berichte zu: Emission Methan Treibhausgas Troposphäre Wasserstoff

Weitere Nachrichten aus der Kategorie Ökologie Umwelt- Naturschutz:

nachricht Wie gefährlich ist Reifenabrieb?
19.02.2018 | Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

nachricht Verbreitung von Fischeiern durch Wasservögel – nur ein Mythos?
19.02.2018 | Universität Basel

Alle Nachrichten aus der Kategorie: Ökologie Umwelt- Naturschutz >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics