Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Leben tief unter dem Meeresboden

09.04.2003


Leben tief unter dem Meeresboden- ein gigantisches unbekanntes Ökosystem entdeckt. Während einer mikrobiologischen Expedition im Rahmen des internationalen Ocean Drilling Programs (ODP) zu den Küsten Perus fanden Wissenschaftler lebende Einzeller in Millionen Jahre alten Sedimenten.


Der Fahrtabschnitt 201



Während einer mikrobiologischen Expedition im Rahmen des internationalen Ocean Drilling Programs (ODP) zu den Küsten Perus fanden Wissenschaftler lebende Einzeller in Millionen Jahre alten Sedimenten. An Bord des Forschungsschiffs JOIDES Resolution ist alles darauf konzipiert, ein mehrere hundert Meter langes Bohrgestänge in den Meeresgrund zu treiben und den Wissenschaftlern die Ablagerungen längst vergangener Zeiten zu liefern. Diese Sedimente sind Träger der historischen Information und dokumentieren, welche Bedingungen in früheren Erdzeitaltern geherrscht haben Sie bergen aber auch Information über aktive Lebensformen, vielleicht sogar lebende Zellfossilien oder Mikroorganismen und Stoffwechselwege, wie sie auf anderen Planeten vorkommen könnten.



Gemeinsam mit ihren amerikanischen Kollegen beprobten die deutschen Meeresforscher vom Max-Planck-Institut für Marine Mikrobiologie in Bremen, dem Alfred-Wegener-Institut in Bremerhaven, dem ICBM in Oldenburg und der Bundesanstalt für Geologie (BGR) auf dem Fahrtabschnitt 201 mit dem Forschungsschiff JOIDES Resolution die Sedimente unterhalb des Meeresboden bis zu einer Tiefe von 420 Metern. Die Geologen, Geochemiker und Mikrobiologen versuchen zu verstehen, welche Mikroorganismen dort leben, welche Energieträger sie nutzen und welche Rolle sie im globalen Ökosystem spielen könnten. Sieben verschiedene Stellen im Pazifik nahe der Westküste des amerikanischen Kontinents - vom Äquator bis Peru- wählten die Forscher so aus, dass die jeweils die typischen in allen Ozeanen anzutreffenden Meeresböden vertreten waren. Schwerpunkt der ODP-Ausfahrt 201 unter der Leitung von Prof. Bo Barker Jorgensen (MPI) und Prof. Stephen D’Hondt (University of Rhode Island) war es, diese unbekannte mikrobielle Biosphäre unterhalb des Meeresbodens zu untersuchen. Auf der ODP Ausfahrt 204 wurden dann Bohrungen am Hydratrücken vor Oregon durchgeführt, mit dem Ziel Proben tiefen Gashydrat-Reservoirs zu erhalten und zu überprüfen, ob es auch dort mikrobielles Leben gibt, und ob die Mikroben von dem gefrorenen Methangas leben können.

Schon vor 20 Jahren gaben die Analysen von Bohrkernen im Rahmen des Deep Sea Drilling Programms erste Hinweise auf mikrobielles Leben tief unter dem Meeresboden. Neuere Zahlen bestätigen dass vermutlich bis zu 30% der gesamten Weltbiomasse versteckt in dieser tiefen Biosphäre lebt. Noch immer ist kaum etwas darüber bekannt, wie diese Zellen leben, und ob sie so alt sind wie die Sedimente in denen sie gefunden werden - Millionen von Jahren. Diese Zellen scheinen aber sehr langsam - sie verdoppeln sich vielleicht nur alle 1000 Jahre im Gegensatz z.B. zu unseren Darmbakterien, die nur 20 Minuten dafür brauchen.

Mit den modernen Bohrkerntechniken gelingt es nun, immer tiefer in den Meeresboden vorzudringen, und dabei Proben ohne bakterielle oder chemische Verunreinigungen zu erhalten. Im von der Europäischen Union geförderten interdisziplinären Projekt Deep Bug sowie im DFG ODP Schwerpunktprogramm erarbeiten Mikrobiologen Techniken, um direkt im Bohrkernmaterial Bakterien zu identifizieren und deren biologische Aktivität zu bestimmen. Mit diesen speziellen mikroskopischen Färbetechniken (FISH) konnten die Mikroorganismen charakterisiert werden (Axel Schippers, BGR Hannover).

Wie funktioniert Leben in der tiefen Biosphäre?

Von Anbeginn des Lebens auf der Erde sinken abgestorbene Biomasse und von Land eingetragene Partikel in die Tiefe des Ozeans und bildet das Meeressediment. Im Laufe von 1000 Jahren wächst so der Meeresboden an manchen Stellen um 1 bis 10 cm in die Höhe. In der obersten Schicht siedeln Mikroorganismen, die ihre Lebensenergie mit Hilfe von Sauerstoff aus der Biomasse ziehen, in tieferen Schichten gibt es keinen freien Sauerstoff mehr. In dieser so genannten anaeroben Zone leben andere Spezialisten, die mit Nitrat, Sulfat und anderen "Oxidationsmitteln" abgestorbene Biomasse und verschiedene organische Substanzen abbauen. Mit radioaktiv markierten Markermolekülen konnten die Forscher die biologische Aktivität besonderer Bakteriengruppen wie z.B. Sulfatreduzierern, bestimmen (B.B. Jørgensen und T. Ferdelman (MPI)). Wo reduzierte chemische Energie vorhanden ist wie z.B. Wasserstoff, Schwefel, Ammonium, Methan und andere Kohlenwasserstoffe, können chemosynthetische Mikroorganismen leben, die mit Hilfe dieser Energie Kohlendioxid fixieren wie die Pflanzen. Riesige Methanvorkommen in den Sedimenten der Weltmeere entstehen aus der Aktivität dieser Mikroorganismen. Dieses Methan ist als Energieträger interessant und kommt in den Sedimenten unter den hohen Drücken und niedrigen Temperaturen nicht als Gas, sondern als Feststoff in Form von Gashydrat vor. Auch manche Mikroorganismen wissen Methan als Energiequelle zu schätzen. Die vor zwei Jahren von der Forschergruppe um Antje Boetius entdeckten mikrobiellen Symbiosen aus Archaeen und Bakterien nehmen das im Meerwasser reichlich vorhandene Sulfat, um dieses Methan zu oxidieren. Auch nach solchen Zellen wird in den tiefen Bohrkernen gesucht. Die Wissenschaftler versuchen auch diese alten Wunderzellen im Labor zu züchten, sowie ihre genetischen Fähigkeiten genauer zu untersuchen (H. Cypionka, ICBM). Eines weiß man schon jetzt: viele der Bakterien brauchen zum Energiegewinn so dringend das Sulfat aus dem Meerwasser, wie wir Menschen den Sauerstoff aus der Luft. Wie jetzt auf dem Fahrtabschnitt 201 festgestellt wurde, kommt dieses Sulfat entweder durch Advektion aus dem Meerwasser oder aus sulfathaltigen Mineralien, die sich nur langsam auflösen. Ein Vorteil des Lebens im Inneren der Erde ist der Ausschluß von Fraßfeinden, sowie vor dem für manche Mikroorganismen toxischen Sauerstoff. Ähnliche Überlebensstrategien für Mikroorganismen könnten auch auf anderen Himmelskörpern wie dem Mars oder dem Jupiter-Mond Europa gelten. Dort gab es auch früher Wasser und vielleicht auch Leben tief in den Sedimenten. Zukünftige Weltraumforscher werden also vielleicht auch von der Methodenentwicklung der Meeresforscher profitieren können.

Dr. Manfred Schlösser, Pressesprecher am Max-Planck-Institut für Marine Mikrobiologie, Celsiusstr. 1, 28359 Bremen, 0421-2028-704, mschloes@mpi-bremen.de

Kooperationspartner im DFG Schwerpunktprogramm ODP zum Thema Tiefe Biosphäre

Koordinator Prof. Dr. H. Kudrass (BGR), 0511-643-2790, kudrass@bgr.de
Prof. Dr. Antje Boetius (AWI, MPI), 0421-2028648, aboetius@mpi-bremen.de
Prof. Dr. Bo Barker Jørgensen (MPI), 0421-2028602, bjoergenmpi-bremen.de
Dr. Timothy Ferdelman (MPI), 0421-2028-651, tferdelm@mpi-bremen.de
Prof. Dr. Heribert Cypionka, (ICBM), 0441-798 - 5360, h.cypionka@icbm.de
Dr. Axel Schippers (BGR), 0511-643-3103, a.schippers@bgr.de

Institutionen
AWI: Alfred-Wegener-Institut für Polar- und Meeresforschung, Columbusstraße
27568 Bremerhaven, www.awi-bremerhaven.de
BGR: Bundesanstalt für Geowissenschaften und Rohstoffe, Stilleweg 2, 30655 Hannover, www.bgr.de
ICBM : Institut für Chemie und Biologie des Meeres (ICBM), Universität Oldenburg D-26111 Oldenburg www.icbm.de
MPI: Max-Planck-Institut für Marine Mikrobiologie, Celsiusstr. 1, 28359 Bremen, 0421-2028-50,
www.mpi-bremen.de


Dr. Manfred Schloesser | idw
Weitere Informationen:
http://www.mpi-bremen.de
http://www.icbm.de
http://www.bgr.de

Weitere Berichte zu: BGR ICBM MPI Meeresboden Methan Mikroorganismus ODP Sauerstoff Sediment Sulfat

Weitere Nachrichten aus der Kategorie Ökologie Umwelt- Naturschutz:

nachricht Wie gefährlich ist Reifenabrieb?
19.02.2018 | Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

nachricht Verbreitung von Fischeiern durch Wasservögel – nur ein Mythos?
19.02.2018 | Universität Basel

Alle Nachrichten aus der Kategorie: Ökologie Umwelt- Naturschutz >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics