Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bayreuther Forschungsarbeiten belegen: Extreme Wetterereignisse beeinflussen biogeochemische Prozesse im Boden

28.04.2009
In zahlreichen Regionen der Erde sind terrestrische Ökosysteme ausgedehnten Trockenperioden, schweren Regenfällen oder intensiven Frostperioden ausgesetzt.

Im Zuge des Klimawandels werden die Intensität und die Häufigkeit solcher extremen Wetterereignisse voraussichtlich zunehmen. Die Folgen dieser Entwicklungen für Böden und Pflanzen werden an der Universität Bayreuth von der DFG-Forschergruppe "Dynamik von Bodenprozessen bei extremen meteorologischen Randbedingungen" untersucht. Die Zeitschrift "Global Change Ecology" veröffentlicht in ihrer Online-Ausgabe (April 2009) vier Beiträge aus dieser Forschergruppe.

In zahlreichen Regionen der Erde sind terrestrische Ökosysteme ausgedehnten Trockenperioden, schweren Regenfällen oder intensiven Frostperioden ausgesetzt. Im Zuge des Klimawandels werden die Intensität und die Häufigkeit solcher extremen Wetterereignisse voraussichtlich zunehmen. Die Folgen dieser Entwicklungen für Böden und Pflanzen werden an der Universität Bayreuth von der DFG-Forschergruppe "Dynamik von Bodenprozessen bei extremen meteorologischen Randbedingungen" untersucht. Unter dem Titel "Impact of extreme meteorological events on soils and plants" hat die Zeitschrift "Global Change Ecology" im April 2009 eine Online-Ausgabe veröffentlicht, die u.a. vier Beiträge aus dieser Bayreuther Forschergruppe enthält. Deren Sprecher, Professor Dr. Egbert Matzner, und sein Mitarbeiter PD Dr. Werner Borken werten die publizierten Forschungsarbeiten in ihrer Einleitung als Belege dafür, dass biogeochemische Bodenprozesse von extremen meteorologischen Ereignissen in einem erheblichen, empirisch messbaren Umfang beeinflusst werden können.

Vergleichende Untersuchungen im Fichtelgebirge

Ein Beispiel dafür sind die Auswirkungen klimatischer Änderungen auf die Böden von Rotfichtenwäldern. Ein Bayreuther Forscherteam hat auf einer Waldfläche im Fichtelgebirge während der Wintermonate die Schneedecke beseitigt und dadurch in bis zu 15 cm Tiefe einen viermonatigen Bodenfrost ausgelöst. Im Vergleich mit einer schneebedeckten und daher weitgehend frostfreien Waldfläche konnte eine deutliche Verringerung der Bodenatmung festgestellt werden. Die von Bodenorganismen und Pflanzenwurzeln verursachte Freisetzung von Kohlendioxid fiel also in der Waldfläche, die vom Bodenfrost betroffen war, deutlich geringer aus. Dieser Effekt setzte sich während einer mehrmonatigen Trockenperiode im darauffolgenden Sommer fort. Denn infolge des Wassermangels konnten sich die Mikroorganismen im Waldboden nur eingeschränkt von der langen Frostperiode erholen, so dass über das ganze Jahr hinweg erheblich weniger Kohlendioxid abgegeben wurde.

Einflüsse von Wetterereignissen auf Mineralisierungsprozesse im Boden

Dieses Ergebnis stimmt mit weiteren Bayreuther Forschungsarbeiten gut überein, die der Mineralisierung von Kohlenstoff und Stickstoff in den Böden unterschiedlicher Klimazonen gewidmet sind. Dabei handelt es sich um Prozesse, die durch Mikroorganismen verursacht werden. Sie zersetzen und verarbeiten organisches Material im Erdboden in der Weise, dass der dabei freiwerdende Stickstoff und Kohlenstoff in anorganischen Substanzen - z.B. Wasser, Kohlendioxid, Salzen oder Spurenelementen - gebunden und in dieser Form in ökosystemare Stoffkreisläufe eingespeist wird. Entsprechend den jeweiligen klimatischen Verhältnissen gestalten sich solche Stoffumsätze und -flüsse in den Böden von Wäldern, Grasflächen oder landwirtschaftlichen Nutzflächen sehr unterschiedlich. Gleichwohl lassen die bisher erzielten Forschungsergebnisse zwei generelle Tendenzen erkennen: Ein starker Anstieg der Trockenheit im Sommer hemmt die Mineralisierung von Kohlenstoff und Stickstoff; eine erhebliche Zunahme der Niederschläge hingegen fördert diese Prozesse und bewirkt, dass mehr Kohlenstoff und Stickstoff aus dem Boden entweicht.

Einflüsse auf Pflanzen: Extreme Wetterereignisse und globaler Klimawandel

Biologische Entwicklungs- und Wachstumsprozesse von Pflanzen können von globalen Klimaänderungen wesentlich beeinflusst werden. Doch es wäre voreilig, Veränderungen dieser pflanzlichen Prozesse in jedem Fall mit einem globalen Klimawandel zu erklären. Darauf macht eine Studie aufmerksam, die in Zusammenarbeit eines Bayreuther Forscherteams mit dem Helmholtz-Zentrum für Umweltforschung (UFZ) in Leipzig entstanden ist. Unterschiedliche Pflanzenarten - insbesondere Honiggras, Besenheide und Hornklee - wurden dabei künstlich erzeugten extremen Wetterereignissen ausgesetzt. Das überraschende Ergebnis: Punktuelle Ereignisse wie starke Trockenheit und heftige Regenfälle können pflanzliche Entwicklungs- und Wachstumsprozesse in ähnlichem Umfang beeinflussen wie ein volles Jahrzehnt einer allmählichen Klimaerwärmung.

"Wir wissen immer noch viel zu wenig darüber, wie die Pflanzenwelt auf die zunehmende Intensität und Häufigkeit extremer Wetterereignisse reagiert. Die jetzt in Global Change Ecology veröffentlichten Ergebnisse liefern aber einige wertvolle Erkenntnisse insbesondere hinsichtlich der komplexen Bodenprozesse", erklärt Professor Matzner. "Gemeinsam mit internationalen Partnern will unsere DFG-Forschergruppe diese Forschungsarbeiten intensivieren. Das Bayreuther Zentrum für Ökologie und Umweltforschung (BayCEER), an dem die Forschergruppe angesiedelt ist, bietet dafür wegen der hier praktizierten fächerübergreifenden Zusammenarbeit beste Voraussetzungen."

Titelaufnahme:

Global Change Ecology, Volume 15 Issue 4 , pp. 781 - 1056 (April 2009)
http://www3.interscience.wiley.com/journal/122219668/issue
Kontaktadresse für weitere Informationen:
Professor Dr. Egbert Matzner
Universität Bayreuth, Bodenökologie
Dr.-Hans-Frisch-Straße 1-3
D 95448 Bayreuth
Telefon: +49 (0) 921 / 55-5610
Fax: +49 (0) 921 / 55-5799
E-Mail: egbert.matzner@uni-bayreuth.de

Christian Wißler | idw
Weitere Informationen:
http://www.bayceer.uni-bayreuth.de/fg_bp/
http://www.uni-bayreuth.de
http://www3.interscience.wiley.com/journal/122219668/issue

Weitere Nachrichten aus der Kategorie Ökologie Umwelt- Naturschutz:

nachricht Wie Brände die Tundra langfristig verändern
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Mit Drohnen Wildschweinschäden schätzen
12.12.2017 | Gesellschaft für Ökologie e.V.

Alle Nachrichten aus der Kategorie: Ökologie Umwelt- Naturschutz >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mit Quantenmechanik zu neuen Solarzellen: Forschungspreis für Bayreuther Physikerin

12.12.2017 | Förderungen Preise

Stottern: Stoppsignale im Gehirn verhindern flüssiges Sprechen

12.12.2017 | Biowissenschaften Chemie

E-Mobilität: Neues Hybridspeicherkonzept soll Reichweite und Leistung erhöhen

12.12.2017 | Energie und Elektrotechnik