Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auf der Spur der kleinsten Teilchen

20.05.2015

Forscherinnen und Forscher der Uni Siegen untersuchen im Projekt „FENOMENO“ die Auswirkungen von Nanomaterialien auf unser Ökosystem.

In Sonnencremes oder Sport-Funktionskleidung ist mehr enthalten als das menschliche Auge sehen kann. Kleinstteilchen, sogenannte Nanopartikel. Diese Nanopartikel sind winzig, ihr Durchmesser beträgt weniger als 100 Nanometer – ein menschliches Haar ist 1000 Mal dicker.


Zu den Projektpartnern gehören neben der Universität Siegen das Fraunhofer Institut für Molekularbiologie und Angewandte Ökologie IME, die Universität Innsbruck und die Universität Aveiro.

Diese Nanopartikel sind fester Bestandteil vieler Produkte, die in unserem Alltag selbstverständlich sind. Nanopartikel gelangen über die Körperpflege oder die Wäsche in Kläranlagen und von dort in unsere Gewässer. Was aber ist auf dem Weg dorthin mit den Nanopartikeln passiert? Wie haben sich die Kleinstteilchen verändert und was bedeutet das für unsere Umwelt und unsere Gesundheit? Mit diesen Fragen beschäftigen sich Forscherinnen und Forscher der Universität Siegen im Rahmen des Projekts „FENOMENO“.

FENOMENO ist ein europäisches Projekt im Rahmen des SIINN ERA-NET Programms (http://www.siinn.eu), das die Uni Siegen zusammen mit Prof. Dr. Christian Schlechtriem am Fraunhofer Institut IME (Schmallenberg), dem Forschungsinstitut für Limnologie der Universität Innsbruck am Mondsee (Österreich) und der Universität Aveiro (Portugal) durchführt. Nationaler Geldgeber ist das Bundesministerium für Bildung und Forschung (BMBF).

Am 1. April 2015 ist das Projekt gestartet, die Fördersumme beträgt mehr als 1,1 Millionen Euro, die Laufzeit ist auf 36 Monate angelegt. Aus der Naturwissenschaftlich-Technischen Fakultät der Universität Siegen sind Wissenschaftlerinnen und Wissenschaftler aus den Bereichen Biologie, Chemie, Informatik und Ethik beteiligt. Die Wechselwirkung zwischen unterschiedlichen Departments der Naturwissenschaftlich-Technischen Fakultät macht die interdisziplinäre Forschungsarbeit in diesem Projekt möglich.

„Von Nanomaterialien gehen, wie von anderen Materialien auch, potenzielle Gefahren aus. Wir möchten aber nicht mahnen, sondern aufklären. Das Projektziel ist, auf rationaler, wissenschaftlich abgesicherter Basis entscheiden zu können, welche Nanomaterialien sicher sind“, sagt Prof. Dr. Holger Schönherr, Koordinator des Projekts.

Zwei Ansätze werden im Projekt verfolgt. Versucht wird zum einen, den Weg von Silber- und Titandioxid-Nanopartikeln in einer natürlichen Nahrungskette (Algen – Wasserflöhe – Jungfische – Raubfische) im Mondsee in Österreich nachzuverfolgen. Zum anderen werden parallel dazu im Labor gezielt die einzelnen Glieder dieser Nahrungskette untersucht.

Prof. Schönherr, Leiter der Arbeitsgruppe „Physikalische Chemie I“ an der Uni Siegen: „Unser Projekt wird den Verbleib und die Auswirkungen von Nanopartikeln auf die aquatische Nahrungskette aufklären und in eine abschließende Risikoabschätzung münden, um die Risiken der Nutzung von Nanoteilchen für Mensch und Umwelt beurteilen zu können.“

In einem ersten Schritt werden Silber- und Titandioxid-Nanopartikel verwendet, die eine Kläranlage passiert haben. Mit hochempfindlicher Elementmassenspektrometrie und hochauflösender Mikroskopie wird analysiert, wie sich diese Nanopartikel verändert haben. Im Labor folgt der nächste Schritt. Die Nanopartikel werden in Verbindung mit Algen, also dem Beginn der Nahrungskette, gebracht. Getestet wird, wie Algen die Nanopartikel aufnehmen.

Dann kommen Wasserflöhe (Daphnien) ins Spiel. Wasserflöhe sind Schlüsselorganismen in der aquatischen Nahrungskette. Sie fressen einerseits Algen und werden andererseits von Jungfischen gefressen. In verschiedenen Testreihen wird erforscht, welche Effekte diese Nanopartikel auf das Verhalten der Wasserflöhe, auf ihre Bewegungen, die Herzschlagrate, den Fortpflanzungserfolg und weitere Kriterien haben.

Die Bewegungen der Wasserflöhe können automatisch verfolgt und ausgewertet werden. Auf diese Weise dienen die Wasserflöhe als Biosensoren für Nanopartikel im Gewässer. Die mikroskopischen Techniken und Verhaltensexperimente erlauben es, die Aufnahme der Nanopartikel durch die Wasserflöhe und den Verbleib der Kleinstteilchen festzustellen.

Die Universität Aveiro wird die biologischen Effekte der Nanopartikel in den Algen, Wasserflöhen und Fischen auf molekularer und biochemischer Ebene untersuchen. Die Universität Innsbruck entnimmt dem Mondsee an verschiedenen Stellen Proben von Wasser, Algen, Wasserflöhen, Fried- und Raubfischen. Diese werden in Kooperation mit allen Partnern chemisch, mikroskopisch, molekular und biochemisch untersucht.

André Zeppenfeld | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-siegen.de

Weitere Nachrichten aus der Kategorie Ökologie Umwelt- Naturschutz:

nachricht Von der Weser bis zur Nordsee: PLAWES erforscht Mikroplastik-Kontaminationen in Ökosystemen
20.09.2017 | Universität Bayreuth

nachricht Der Monsun und die Treibhausgase
18.09.2017 | Forschungszentrum Jülich

Alle Nachrichten aus der Kategorie: Ökologie Umwelt- Naturschutz >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Autonomes Fahren wirft viele Fragen auf

20.09.2017 | Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neuer Ansatz: Nierenschädigungen therapieren, bevor Symptome auftreten

20.09.2017 | Medizin Gesundheit

Autonomes Fahren wirft viele Fragen auf

20.09.2017 | Veranstaltungsnachrichten

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten