Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wettbewerb schiebt in Netzwerken das Wachstum an

17.01.2011
Netzwerke können sich sprunghaft vergrößern, wenn einzelne neue Verbindungen hinzu kommen

Eine einzige neue Verbindung kann die Größe eines Netzwerkes dramatisch erhöhen – ganz gleich, ob es sich bei dieser Verbindung um einen zusätzlichen Link im Internet, eine neue Bekanntschaft im Freundeskreis oder eine weitere Verknüpfung zwischen zwei Nervenzellen im Gehirn handelt.

Zu diesem Ergebnis kommen Wissenschaftler des Max-Planck-Instituts für Dynamik und Selbstorganisation (MPIDS), des Bernstein Center for Computational Neuroscience Göttingen und der Universität Göttingen. In der Fachzeitschrift Nature Physics legen die Forscher jetzt eine theoretische Studie vor, die erstmals den Einfluss einzelner zusätzlicher Verknüpfungen in einem Netzwerk mathematisch beschreibt. (Nature Physics, online veröffentlicht am 16.1.11)

Im Sportverein lernt man einen neuen Mitspieler kennen und verabredet sich am nächsten Wochenende zum gemeinsamen Kinobesuch. Der neue Spieler bringt drei Freunde zur Verabredung mit – und schon hat sich der eigene Bekanntenkreis durch nur einen neuen Kontakt um vier Personen vergrößert. Wachstumsprozesse dieser Art treten in vielen Netzwerken auf: Nervenzellen im Gehirn knüpfen ständig neue Verbindungen, Webseiten verlinken aufeinander und ein Flugreisender mit Grippe baut durch seine Zwischenstopps nach und nach ein Netzwerk infizierter Orte auf. Aus Sicht der Wissenschaft sind solche Vergrößerungsprozesse noch recht unerforscht: Wie verändert sich ein Netzwerk, wenn einzelne Verbindungen dazukommen? Und wie schnell kann ein Netzwerk dadurch an Größe zulegen?

Um diese Fragen zu beantworten, haben die Göttinger Wissenschaftler das Wachstum von Netzwerken Verbindung für Verbindung verfolgt. Eine neue Verknüpfung kann dabei jedoch nicht nur ein einzelnes neues Element ins Spiel bringen, sondern auch (wie im Beispiel des neuen Mitspielers im Sportverein) das Ausgangsnetzwerk mit einem weiteren vereinen. Zudem konzentrierten sich die Forscher auf eine spezielle Form des Wachstums, die eine Art Konkurrenz zwischen möglichen Verbindungen ins Spiel bringt: Stehen mehrere neue Verbindungen zur Auswahl, kommt nur diejenige zustande, die insgesamt das kleinste Netzwerk erzeugt (siehe Abbildung 1). „Es gibt Hinweise darauf, dass sich wachsende Netzwerke aus Nervenzellen bevorzugt zunächst zu kleinen Gruppen zusammenschließen und somit grob dem Wachstumsprozess folgen, den wir betrachtet haben“, sagt Jan Nagler von der Universität Göttingen und vom MPIDS.

Die Situation ist vergleichbar mit der in einem Feriencamp für Kinder, dessen Teilnehmer sich zu Beginn der Ferien alle untereinander nicht kennen. Typischerweise werden sich die Kinder zunächst in kleinen Gruppen und Paaren zusammenschließen. Will ein solches Paar nun das Netzwerk seiner Freundschaften innerhalb des Systems „Feriencamp“ vergrößern, wird es mit hoher Wahrscheinlichkeit wiederum zurückhaltend vorgehen: Es wird zunächst ein weiteres Paar oder eine kleine Gruppe ansprechen, nicht aber auf eine große Clique zusteuern. Zu Beginn der Ferien wachsen die einzelnen Netzwerke auf diese Weise zunächst nur langsam. Gegen Ende kennen sich dann alle Kinder: Das Netzwerk hat seine maximal mögliche Größe erreicht und verbindet alle Elemente des Systems.

„In unserer Studie haben wir vor allem die Übergangsphase untersucht, also die Wachstumsphase zwischen den vereinzelt verknüpften Elementen zu Beginn und dem vollständig verbundenen Gesamtsystem am Ende“, erklärt Marc Timme, Leiter der Max-Planck-Forschergruppe „Netzwerk-Dynamik“ am MPIDS. Wie schließen sich die zahlreichen kleinen Netzwerke zu einem zusammen? Entstehen mehrere große Netzwerke parallel oder entwickelt sich ein dominantes Netzwerk, das alle anderen überragt? Neben Computersimulationen gelang es den Göttinger Wissenschaftlern erstmals, mathematische Formeln herzuleiten, welche die Netzwerkentwicklung in dieser Übergangsphase Verbindung für Verbindung beschreiben.

Die Forscher fanden, dass ab einer bestimmten Anzahl neuer Verbindungen ein plötzlicher Wachstumsschub auftritt: Die Größe des größten Netzwerkes im System nimmt dramatisch zu. „Bezogen auf die Systemgröße ist dieser Sprung in kleinen Systemen dramatischer als in großen“, erklärt Nagler. Doch selbst bei Systemen, die sich aus einer gewaltigen Anzahl von Elementen zusammensetzen – vergleichbar etwa mit der Anzahl der Neuronen im Gehirn – kann sich die Größe des größten Netzwerkes sogar verdoppeln. „Auf diese Weise entstehen innerhalb eines Systems zunächst viele Netzwerke etwa derselben Größe“, so Timme. Erst spät entsteht so ein dominantes allumspannendes Netzwerk.

In einem nächsten Schritt wollen die Forscher nun identifizieren, welche Formen des Wettbewerbs zwischen möglichen Links in natürlichen Systemen aus Biologie und Physik ein solch schnelles Wachstum ermöglichen, und versuchen zu klären, welche Auswirkungen die Wachstumsschübe haben.

Dr. Birgit Krummheuer | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/

Weitere Nachrichten aus der Kategorie Studien Analysen:

nachricht Tabakrauchen verkalkt Arterien stärker als reiner Cannabis-Konsum
11.04.2018 | Universität Bern

nachricht »Zweites Leben« für Smartphones und Tablets
16.03.2018 | Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

Alle Nachrichten aus der Kategorie: Studien Analysen >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Metalle verbinden ohne Schweißen

Kieler Prototyp für neue Verbindungstechnik wird auf Hannover Messe präsentiert

Schweißen ist noch immer die Standardtechnik, um Metalle miteinander zu verbinden. Doch das aufwändige Verfahren unter hohen Temperaturen ist nicht überall...

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Moleküle brillant beleuchtet

23.04.2018 | Physik Astronomie

Sauber und effizient - Fraunhofer ISE präsentiert Wasserstofftechnologien auf Hannover Messe

23.04.2018 | HANNOVER MESSE

Fraunhofer IMWS entwickelt biobasierte Faser-Kunststoff-Verbunde für Leichtbau-Anwendungen

23.04.2018 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics