Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wettbewerb schiebt in Netzwerken das Wachstum an

17.01.2011
Netzwerke können sich sprunghaft vergrößern, wenn einzelne neue Verbindungen hinzu kommen

Eine einzige neue Verbindung kann die Größe eines Netzwerkes dramatisch erhöhen – ganz gleich, ob es sich bei dieser Verbindung um einen zusätzlichen Link im Internet, eine neue Bekanntschaft im Freundeskreis oder eine weitere Verknüpfung zwischen zwei Nervenzellen im Gehirn handelt.

Zu diesem Ergebnis kommen Wissenschaftler des Max-Planck-Instituts für Dynamik und Selbstorganisation (MPIDS), des Bernstein Center for Computational Neuroscience Göttingen und der Universität Göttingen. In der Fachzeitschrift Nature Physics legen die Forscher jetzt eine theoretische Studie vor, die erstmals den Einfluss einzelner zusätzlicher Verknüpfungen in einem Netzwerk mathematisch beschreibt. (Nature Physics, online veröffentlicht am 16.1.11)

Im Sportverein lernt man einen neuen Mitspieler kennen und verabredet sich am nächsten Wochenende zum gemeinsamen Kinobesuch. Der neue Spieler bringt drei Freunde zur Verabredung mit – und schon hat sich der eigene Bekanntenkreis durch nur einen neuen Kontakt um vier Personen vergrößert. Wachstumsprozesse dieser Art treten in vielen Netzwerken auf: Nervenzellen im Gehirn knüpfen ständig neue Verbindungen, Webseiten verlinken aufeinander und ein Flugreisender mit Grippe baut durch seine Zwischenstopps nach und nach ein Netzwerk infizierter Orte auf. Aus Sicht der Wissenschaft sind solche Vergrößerungsprozesse noch recht unerforscht: Wie verändert sich ein Netzwerk, wenn einzelne Verbindungen dazukommen? Und wie schnell kann ein Netzwerk dadurch an Größe zulegen?

Um diese Fragen zu beantworten, haben die Göttinger Wissenschaftler das Wachstum von Netzwerken Verbindung für Verbindung verfolgt. Eine neue Verknüpfung kann dabei jedoch nicht nur ein einzelnes neues Element ins Spiel bringen, sondern auch (wie im Beispiel des neuen Mitspielers im Sportverein) das Ausgangsnetzwerk mit einem weiteren vereinen. Zudem konzentrierten sich die Forscher auf eine spezielle Form des Wachstums, die eine Art Konkurrenz zwischen möglichen Verbindungen ins Spiel bringt: Stehen mehrere neue Verbindungen zur Auswahl, kommt nur diejenige zustande, die insgesamt das kleinste Netzwerk erzeugt (siehe Abbildung 1). „Es gibt Hinweise darauf, dass sich wachsende Netzwerke aus Nervenzellen bevorzugt zunächst zu kleinen Gruppen zusammenschließen und somit grob dem Wachstumsprozess folgen, den wir betrachtet haben“, sagt Jan Nagler von der Universität Göttingen und vom MPIDS.

Die Situation ist vergleichbar mit der in einem Feriencamp für Kinder, dessen Teilnehmer sich zu Beginn der Ferien alle untereinander nicht kennen. Typischerweise werden sich die Kinder zunächst in kleinen Gruppen und Paaren zusammenschließen. Will ein solches Paar nun das Netzwerk seiner Freundschaften innerhalb des Systems „Feriencamp“ vergrößern, wird es mit hoher Wahrscheinlichkeit wiederum zurückhaltend vorgehen: Es wird zunächst ein weiteres Paar oder eine kleine Gruppe ansprechen, nicht aber auf eine große Clique zusteuern. Zu Beginn der Ferien wachsen die einzelnen Netzwerke auf diese Weise zunächst nur langsam. Gegen Ende kennen sich dann alle Kinder: Das Netzwerk hat seine maximal mögliche Größe erreicht und verbindet alle Elemente des Systems.

„In unserer Studie haben wir vor allem die Übergangsphase untersucht, also die Wachstumsphase zwischen den vereinzelt verknüpften Elementen zu Beginn und dem vollständig verbundenen Gesamtsystem am Ende“, erklärt Marc Timme, Leiter der Max-Planck-Forschergruppe „Netzwerk-Dynamik“ am MPIDS. Wie schließen sich die zahlreichen kleinen Netzwerke zu einem zusammen? Entstehen mehrere große Netzwerke parallel oder entwickelt sich ein dominantes Netzwerk, das alle anderen überragt? Neben Computersimulationen gelang es den Göttinger Wissenschaftlern erstmals, mathematische Formeln herzuleiten, welche die Netzwerkentwicklung in dieser Übergangsphase Verbindung für Verbindung beschreiben.

Die Forscher fanden, dass ab einer bestimmten Anzahl neuer Verbindungen ein plötzlicher Wachstumsschub auftritt: Die Größe des größten Netzwerkes im System nimmt dramatisch zu. „Bezogen auf die Systemgröße ist dieser Sprung in kleinen Systemen dramatischer als in großen“, erklärt Nagler. Doch selbst bei Systemen, die sich aus einer gewaltigen Anzahl von Elementen zusammensetzen – vergleichbar etwa mit der Anzahl der Neuronen im Gehirn – kann sich die Größe des größten Netzwerkes sogar verdoppeln. „Auf diese Weise entstehen innerhalb eines Systems zunächst viele Netzwerke etwa derselben Größe“, so Timme. Erst spät entsteht so ein dominantes allumspannendes Netzwerk.

In einem nächsten Schritt wollen die Forscher nun identifizieren, welche Formen des Wettbewerbs zwischen möglichen Links in natürlichen Systemen aus Biologie und Physik ein solch schnelles Wachstum ermöglichen, und versuchen zu klären, welche Auswirkungen die Wachstumsschübe haben.

Dr. Birgit Krummheuer | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/

Weitere Nachrichten aus der Kategorie Studien Analysen:

nachricht Studie zu sicherem Autofahren bis ins hohe Alter
19.06.2017 | Leibniz-Institut für Arbeitsforschung an der TU Dortmund

nachricht Welche Auswirkungen hat die Digitalisierung der Industrieproduktion auf Jobs und Umweltschutz?
16.05.2017 | Institute for Advanced Sustainability Studies e.V.

Alle Nachrichten aus der Kategorie: Studien Analysen >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Im Focus: Forscher entschlüsseln erstmals intaktes Virus atomgenau mit Röntgenlaser

Bahnbrechende Untersuchungsmethode beschleunigt Proteinanalyse um ein Vielfaches

Ein internationales Forscherteam hat erstmals mit einem Röntgenlaser die atomgenaue Struktur eines intakten Viruspartikels entschlüsselt. Die verwendete...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

Forschung zu Stressbewältigung wird diskutiert

21.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Individualisierte Faserkomponenten für den Weltmarkt

22.06.2017 | Physik Astronomie

Evolutionsbiologie: Wie die Zellen zu ihren Kraftwerken kamen

22.06.2017 | Biowissenschaften Chemie

Spinflüssigkeiten – zurück zu den Anfängen

22.06.2017 | Physik Astronomie