Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wettbewerb schiebt in Netzwerken das Wachstum an

17.01.2011
Netzwerke können sich sprunghaft vergrößern, wenn einzelne neue Verbindungen hinzu kommen

Eine einzige neue Verbindung kann die Größe eines Netzwerkes dramatisch erhöhen – ganz gleich, ob es sich bei dieser Verbindung um einen zusätzlichen Link im Internet, eine neue Bekanntschaft im Freundeskreis oder eine weitere Verknüpfung zwischen zwei Nervenzellen im Gehirn handelt.

Zu diesem Ergebnis kommen Wissenschaftler des Max-Planck-Instituts für Dynamik und Selbstorganisation (MPIDS), des Bernstein Center for Computational Neuroscience Göttingen und der Universität Göttingen. In der Fachzeitschrift Nature Physics legen die Forscher jetzt eine theoretische Studie vor, die erstmals den Einfluss einzelner zusätzlicher Verknüpfungen in einem Netzwerk mathematisch beschreibt. (Nature Physics, online veröffentlicht am 16.1.11)

Im Sportverein lernt man einen neuen Mitspieler kennen und verabredet sich am nächsten Wochenende zum gemeinsamen Kinobesuch. Der neue Spieler bringt drei Freunde zur Verabredung mit – und schon hat sich der eigene Bekanntenkreis durch nur einen neuen Kontakt um vier Personen vergrößert. Wachstumsprozesse dieser Art treten in vielen Netzwerken auf: Nervenzellen im Gehirn knüpfen ständig neue Verbindungen, Webseiten verlinken aufeinander und ein Flugreisender mit Grippe baut durch seine Zwischenstopps nach und nach ein Netzwerk infizierter Orte auf. Aus Sicht der Wissenschaft sind solche Vergrößerungsprozesse noch recht unerforscht: Wie verändert sich ein Netzwerk, wenn einzelne Verbindungen dazukommen? Und wie schnell kann ein Netzwerk dadurch an Größe zulegen?

Um diese Fragen zu beantworten, haben die Göttinger Wissenschaftler das Wachstum von Netzwerken Verbindung für Verbindung verfolgt. Eine neue Verknüpfung kann dabei jedoch nicht nur ein einzelnes neues Element ins Spiel bringen, sondern auch (wie im Beispiel des neuen Mitspielers im Sportverein) das Ausgangsnetzwerk mit einem weiteren vereinen. Zudem konzentrierten sich die Forscher auf eine spezielle Form des Wachstums, die eine Art Konkurrenz zwischen möglichen Verbindungen ins Spiel bringt: Stehen mehrere neue Verbindungen zur Auswahl, kommt nur diejenige zustande, die insgesamt das kleinste Netzwerk erzeugt (siehe Abbildung 1). „Es gibt Hinweise darauf, dass sich wachsende Netzwerke aus Nervenzellen bevorzugt zunächst zu kleinen Gruppen zusammenschließen und somit grob dem Wachstumsprozess folgen, den wir betrachtet haben“, sagt Jan Nagler von der Universität Göttingen und vom MPIDS.

Die Situation ist vergleichbar mit der in einem Feriencamp für Kinder, dessen Teilnehmer sich zu Beginn der Ferien alle untereinander nicht kennen. Typischerweise werden sich die Kinder zunächst in kleinen Gruppen und Paaren zusammenschließen. Will ein solches Paar nun das Netzwerk seiner Freundschaften innerhalb des Systems „Feriencamp“ vergrößern, wird es mit hoher Wahrscheinlichkeit wiederum zurückhaltend vorgehen: Es wird zunächst ein weiteres Paar oder eine kleine Gruppe ansprechen, nicht aber auf eine große Clique zusteuern. Zu Beginn der Ferien wachsen die einzelnen Netzwerke auf diese Weise zunächst nur langsam. Gegen Ende kennen sich dann alle Kinder: Das Netzwerk hat seine maximal mögliche Größe erreicht und verbindet alle Elemente des Systems.

„In unserer Studie haben wir vor allem die Übergangsphase untersucht, also die Wachstumsphase zwischen den vereinzelt verknüpften Elementen zu Beginn und dem vollständig verbundenen Gesamtsystem am Ende“, erklärt Marc Timme, Leiter der Max-Planck-Forschergruppe „Netzwerk-Dynamik“ am MPIDS. Wie schließen sich die zahlreichen kleinen Netzwerke zu einem zusammen? Entstehen mehrere große Netzwerke parallel oder entwickelt sich ein dominantes Netzwerk, das alle anderen überragt? Neben Computersimulationen gelang es den Göttinger Wissenschaftlern erstmals, mathematische Formeln herzuleiten, welche die Netzwerkentwicklung in dieser Übergangsphase Verbindung für Verbindung beschreiben.

Die Forscher fanden, dass ab einer bestimmten Anzahl neuer Verbindungen ein plötzlicher Wachstumsschub auftritt: Die Größe des größten Netzwerkes im System nimmt dramatisch zu. „Bezogen auf die Systemgröße ist dieser Sprung in kleinen Systemen dramatischer als in großen“, erklärt Nagler. Doch selbst bei Systemen, die sich aus einer gewaltigen Anzahl von Elementen zusammensetzen – vergleichbar etwa mit der Anzahl der Neuronen im Gehirn – kann sich die Größe des größten Netzwerkes sogar verdoppeln. „Auf diese Weise entstehen innerhalb eines Systems zunächst viele Netzwerke etwa derselben Größe“, so Timme. Erst spät entsteht so ein dominantes allumspannendes Netzwerk.

In einem nächsten Schritt wollen die Forscher nun identifizieren, welche Formen des Wettbewerbs zwischen möglichen Links in natürlichen Systemen aus Biologie und Physik ein solch schnelles Wachstum ermöglichen, und versuchen zu klären, welche Auswirkungen die Wachstumsschübe haben.

Dr. Birgit Krummheuer | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/

Weitere Nachrichten aus der Kategorie Studien Analysen:

nachricht Der Klang des Ozeans
12.01.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Verstädterung wird 300.000 km2 fruchtbarsten Ackerlands verschlingen
27.12.2016 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

Alle Nachrichten aus der Kategorie: Studien Analysen >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungsnachrichten

Intelligente Haustechnik hört auf „LISTEN“

17.01.2017 | Architektur Bauwesen

Satellitengestützte Lasermesstechnik gegen den Klimawandel

17.01.2017 | Maschinenbau