Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Trügerisches Modell - neue Studie stellt Forschungsvorgaben in Frage

05.03.2010
Obwohl Mäuse ganz anders aussehen, ähnelt ihre Grundausstattung der des Homo sapiens in vielerlei Hinsicht. Für beeindruckende 99 Prozent der Maus-Gene etwa gibt es eine entsprechende Sequenz im menschlichen Erbgut.

So kommt es auch, dass das Gesetz Wissenschaftlern hierzulande nur erlaubt, mit menschlichen embryonalen Stammzellen zu forschen, wenn sie ihre Fragen so weit wie möglich an tierischen Zellen "vorgeklärt" haben. Doch solche Tests sind häufig nutzlos - und führen mitunter sogar in die Irre, wie eine aktuelle Untersuchung von Forschern um Hans Schöler vom Max-Planck-Institut für molekulare Biomedizin in Münster zeigt.

Seit Jahren rätseln Wissenschaftler, wie weit sich Erkenntnisse aus Untersuchungen an embryonalen Stammzellen (ES-Zellen) von Mäusen auf den Menschen übertragen lassen. Zwar sind sowohl humane als auch Maus-ES-Zellen pluripotent. Das heißt, sie sind in der Lage, jeden der über 200 Zelltypen des Körpers zu bilden. Auch ist in beiden Arten von Zellen zum Beispiel der so genannte Transkriptionsfaktor Oct4 aktiv. Jenes Gen also, das für die Aufrechterhaltung von Pluripotenz unerlässlich ist und sowohl Eizellen als auch embryonale Stammzellen und frühe Embryonen potentiell unsterblich macht.

In anderen Punkten aber, so weiß man seit längerem, unterscheiden sich ES-Zellen von Mensch und Maus ganz erheblich. Bestimmte Signalstoffe zum Beispiel, mit denen man Maus-Zellen dazu anregen kann, sich zu Leber-, Nerven- oder Muskelzellen zu entwickeln, rufen in menschlichen ES-Zellen keine oder ganz andere Wirkungen hervor.

Die Gründe dafür sind noch unklar. 2007 gelang es jedoch zwei Forscherteams, eine viel versprechende, neue Art von pluripotenten Zellen aus Embryonen von Mäusen zu isolieren (s. Brons und Kollegen, Nature 448, 2007). Auch diese so genannten Epiblast-Stammzellen (EpiSC) sind pluripotent. Sie stammen jedoch aus einem späteren Stadium der Embryonalentwicklung: Sie werden nicht (wie 'klassische' ES-Zellen) aus einem wenige Tage alten Embryo im Stadium einer Blastozyste gewonnen, sondern aus einem Embryo, der sich gerade in der Gebärmutter eingenistet hat und der als Epiblast bezeichnet wird.

Das Erstaunliche daran: Obwohl Epiblast-Stammzellen in ihrer Entwicklung eigentlich schon einen Schritt weiter sind, schienen sie den ES-Zellen des Menschen stärker zu ähneln als 'klassische' ES-Zellen der Maus. Sowohl Epiblast-Stammzellen als auch humane ES-Zellen lassen sich zum Beispiel unter Zugabe eines bestimmten Hormons, dem Wachstumsfaktor FGF2, züchten und in ihrem Alleskönner-Zustand halten. "In der allgemeinen wissenschaftlichen Diskussion wurden Epiblast-Stammzellen der Maus daher humanen ES-Zellen quasi gleich gesetzt", sagt Boris Greber, der Erst-Autor der Studie.

Unterschiedliche Wirkung von Signalmolekülen

Doch der Biochemiker wollte es genauer wissen. Er und seine Kollegen haben deshalb in ihrer jüngsten Studie untersucht, wie Maus-Epiblast- und menschliche embryonale Stammzellen auf verschiedene Wachstumsfaktoren und Hemmstoffe reagieren. Und siehe da: Beide Arten von Zellen unterschieden sich in einem zentralen Punkt. Während der Wachstumsfaktor FGF die Selbsterneuerung der menschlichen ES-Zellen aktiv unterstützte, war dies bei Epiblast-Zellen der Maus eben nicht der Fall.

"Das heißt letztlich, dass viele Voruntersuchungen an tierischen Zellen gerade bei medizinisch relevanten Projekten unter Umständen nicht nur nichts nützen. Die Ergebnisse aus solchen Vorab-Tests können sogar irreführend sein." Auch künftig, so Schöler, seien menschliche ES-Zellen für die Stammzellforschung daher unverzichtbar. "Die jüngsten Erfolge auf dem Gebiet der Reprogrammierung von ausgereiften menschlichen Körperzellen erzeugen mitunter den Eindruck, dass Versuche mit menschlichen ES-Zellen inzwischen überflüssig sind. Aber dieser Eindruck täuscht." Weder die Techniken zur Reprogrammierung noch zur zielgerichteten Differenzierung von Zellen seien bislang ausgereift.

Menschliche Stammzellen bleiben unverzichtbar

Nur ein Bruchteil der Zellen, die die Forscher mit ihren Rezepten behandeln, weist anschließend die richtigen Eigenschaften auf. Und nur durch aufwändige, langwierige Tests lassen sich die erfolgreich umgewandelten Zellen unter einer Vielzahl von unvollständig reprogrammierten Zellen identifizieren. "Unsere jüngste Studie belegt, dass tierische Modellsysteme für etliche solcher Tests unzulänglich sind", sagt Schöler. "Gerade, wenn es darum geht, sichere und wirksame Stammzelltherapien zu entwickeln, werden wir auch künftig humane ES-Zellen als Goldstandard zum Vergleich brauchen. Lange Voruntersuchungen an tierischen Zellen bergen in diesen Fällen die Gefahr, dass wir wertvolle Zeit und Ressourcen vergeuden."

Originalveröffentlichung:
Boris Greber, Guangming Wu, Christof Bernemann, Jin Young Joo, Dong Wook Han, Kinarm Ko, Natalia Tapia, Davood Sabour, Jared Sterneckert, Paul Tesar, Hans R. Schöler
Conserved and divergent roles of FGF signaling in mouse epiblast stem cells and human embryonic stem cells

Cell Stem Cell, 5. März 2010, doi:10.1016/j.stem.2010.01.003

Kontakt:

Dr. Boris Greber
Max-Planck-Institut für molekulare Biomedizin, Münster
Tel: 0251 70365-321
E-Mail: boris.greber@mpi-muenster.mpg.de
Dr. Jeanine Müller-Keuker, PR-Referentin
Max-Planck-Institut für molekulare Biomedizin, Münster
Tel: 0251 70365-325
E-Mail: presse@mpi-muenster.mpg.de

Dr. Harald Rösch | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpi-muenster.mpg.de

Weitere Nachrichten aus der Kategorie Studien Analysen:

nachricht Studie zu Bildungsangeboten für die Industrie 4.0 in Österreich
05.02.2018 | Fachhochschule St. Pölten

nachricht Schildkrötengehirne sind komplexer als gedacht
05.02.2018 | Eberhard Karls Universität Tübingen

Alle Nachrichten aus der Kategorie: Studien Analysen >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics