Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Studie eröffnet neue Wege in der Biowasserstoff-Forschung

25.04.2014

Wissenschaftlern der TU Berlin ist es mit Forschern der Freien Universität Berlin, der Charité und der Humboldt-Universität zu Berlin gelungen, die Funktionsweise eines molekularen Schalters in Biomolekülen aufzuklären.

Die Studie wurde kürzlich in der angesehenen Fachzeitschrift „Nature Chemical Biology“ veröffentlicht. Die neuen Erkenntnisse sind nicht nur für die Grundlagenforschung, sondern auch für die technische Anwendung der biologischen Wasserstoffumwandlung von großer Bedeutung, denn die Kenntnis der molekularen Struktur der Hydrogenasen ebnet den Weg für die Synthese von chemischen Modellverbindungen zur Produktion des alternativen Energieträgers Wasserstoff.

Der elektronische Schalter ist zentraler Bestandteil einiger Eiweiße, die in der Lage sind, Wasserstoff entweder zu produzieren oder diesen zur Energiegewinnung zu spalten. Aufgrund dieser Eigenschaften stehen diese Biokatalysatoren – genannt Hydrogenasen - weltweit im Fokus der Forschung.

Dabei sind diejenigen Hydrogenasen von besonderem Interesse, die durch den Sauerstoff in der Luft nicht inaktiviert werden. Gerade für diese ungewöhnliche Eigenschaft der Sauerstoffverträglichkeit spielt der neuartige Schalter eine Schlüsselrolle. Es handelt sich dabei um einen Cluster aus Eisen und Schwefelatomen, welcher Elektronen leiten oder wahlweise auch speichern kann. Die Eigenschaft, zwei Elektronen gleichzeitig aufnehmen oder abgeben zu können, unterscheidet diesen Cluster von nahezu allen bislang bekannten Eisen-Schwefel-Zentren.

„Aufgrund ihrer transdisziplinären Methodik konnte unsere Forschergruppe entschlüsseln, wie der elektronische Schalter es der Hydrogenase ermöglicht, den schädlichen Sauerstoff zu entgiften, und gleichzeitig gewährleistet, dass weiterhin Energie aus Wasserstoff gewonnen wird", sagt der Mikrobiologe Dr. Oliver Lenz vom Institut für Chemie der TU Berlin, der gemeinsam mit Dr. Patrick Scheerer von der Charité-Universitätsmedizin Berlin die Koordination des Forschungsprojekts übernahm.

Die im hohen Maße interdisziplinäre Studie profitierte von der exzellenten Wissenschaftslandschaft in Berlin. Sie wurde durch den Zusammenschluss von sieben Forschungsgruppen verschiedener Fachrichtungen innerhalb des Exzellenzclusters „Unifying Concepts in Catalysis“ (UniCat) ermöglicht.

UniCat ist ein im Rahmen der Exzellenzinitiative des Bundes und der Länder gegründeter Exzellenzcluster, in dem etwa 240 Wissenschaftler und Wissenschaftlerinnen aus Chemie, Physik, Biologie und Verfahrenstechnik aus vier Universitäten und zwei Max-Planck-Instituten aus Berlin und Potsdam das volkswirtschaftlich wichtige Feld der Katalyse erforschen.

Weitere Informationen erteilen Ihnen gern:
Dr. Oliver Lenz, TU Berlin, Institut für Chemie, E-Mail: oliver.lenz@tu-berlin.de

Dr. Patrick Scheerer, Charité-Universitätsmedizin Berlin, Institut für Medizinische Physik und Biophysik, E-Mail: patrick.scheerer@charite.de

Stefanie Terp | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Studien Analysen:

nachricht Welche Auswirkungen hat die Digitalisierung der Industrieproduktion auf Jobs und Umweltschutz?
16.05.2017 | Institute for Advanced Sustainability Studies e.V.

nachricht Klimawandel: ungeahnte Rolle der Bodenerosion
11.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Studien Analysen >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen

23.05.2017 | Biowissenschaften Chemie

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungsnachrichten

CAST-Projekt setzt Dunkler Materie neue Grenzen

23.05.2017 | Physik Astronomie