Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Selbst-rekonstruierende Laserstrahlen

12.10.2010
Forscher der Universität Freiburg entwickeln ein neues Konzept in der Mikroskopie

Jeder Autofahrer kennt die Schwierigkeiten, wenn im Herbst auf nebligen Straßen die Sichtweite unter 50 Meter sinkt. Das Licht der Scheinwerfer wird an den Nebeltröpfchen gestreut und beleuchtet auftretende Hindernisse nicht ausreichend, weil es sie nicht mehr erreicht.

Dieses alltägliche Beispiel veranschaulicht ein bedeutendes Problem der Lichtmikroskopie: Bei deren Einsatz in der modernen Zellbiologie streuen dichte Ansammlungen von Tausenden von Zellen das Beleuchtungslicht so stark, dass die Zellen im hinteren Teil des Objekts kaum noch zu sehen sind. Das Konzept selbst-rekonstruierender Laserstrahlen, wie es eher aus der Science-Fiction-Welt bekannt ist, könnte einen verheißungsvollen Lösungsansatz dieser Problematik bieten.

Dr. Alexander Rohrbach, Professor für Bio- und Nanophotonik am Institut für Mikrosystemtechnik der Universität Freiburg, entwickelt mit seiner Arbeitsgruppe neuartige, unkonventionelle Mikroskopieverfahren. Sein Doktorand Florian Fahrbach befasste sich zunächst als Diplomand mit selbst-rekonstruierenden Laserstrahlen. „Wir arbeiten seit vier Jahren an dem Thema“, erklärt er: „Ohne die Unterstützung des Freiburger Exzellenzclusters BIOSS, Centre for Biological Signalling Studies, aber auch der Firma Carl Zeiss MicroImaging GmbH hätten wir das jetzt vorgestellte Konzept nur sehr schwer realisieren können!“ Rohrbach freut sich, denn: „Hier wurde der direkte Transfer von der Grundlagenforschung in die Anwendung mit dem neuen Mikroskop erreicht. Das ist ganz sicher das, was ein Forscher sich wünscht!“

In der November-Ausgabe von Nature Photonics beschreiben die Wissenschaftler das von ihnen gebaute Lichtmikroskop, dessen Strahlen sich beim Durchdringen lichtstreuender Materie selbst wieder bündeln. Ihr Verfahren erlaubt nicht nur neue Einblicke in die Physik der komplexen Lichtstreuung, sondern ermöglicht es beispielsweise, circa 50 Prozent tiefer in menschliche Haut hineinzuschauen als bisher mit konventionellen Laserstrahlen. Ihre Neuentwicklung nennen die Autoren MISERB (microscope with self-reconstructing beams).

In mehreren Experimenten konnten die Freiburger Forscher zeigen, dass sich speziell geformte Laserstrahlen auch dann selbst rekonstruieren können, wenn verschiedene Hindernisse, im Extremfall viele licht-streuende biologische Zellen, das Profil des Laserstrahls immer wieder zerstören. Die Selbstrekonstruktion funktioniert, weil gestreute Photonen (Lichtquanten) im Zentrum des Strahls kontinuierlich durch neue, von der Seite kommende Photonen ersetzt werden. Erstaunlich ist allerdings, dass die Photonen von der Seite trotz massiver Verzögerungen durch die Streuer alle fast phasengleich im Zentrum eintreffen, um dort ein neues Strahlprofil zu bilden. Die Forscher formten hierzu gewöhnliche Laserstrahlen durch ein Computer-gesteuertes Hologramm, ein Gerät, das die Phase des Lichts verändert, zu so genannten Bessel-Strahlen um. Deren Phasenquerschnitt entspricht dem Verlauf eines Kegels. Obwohl Bessel-Strahlen als beugungsfreie Strahlen gelten, war bislang völlig unklar, ob und inwieweit sie auch in inhomogener Materie, also dort, wo viel Streuung stattfindet, ihre ursprüngliche Strahlform von alleine zurückgewinnen können.

Einerseits verheißen die Ergebnisse dieser Studie weitere physikalische Experimente im Bereich der nichtlinearen Optik. Andererseits bestehen berechtigte Hoffnungen, dass für den Exzellenzcluster BIOSS neue biologische Signalkaskaden tief im Inneren von lebenden Organismen besser als bisher sichtbar gemacht werden können.

Christiane Gieseking-Anz

Veröffentlichung
Nature Photonics: „Microscopy with self-reconstructing beams”
Florian O. Fahrbach, Philipp Simon und Alexander Rohrbach.
Published online: 12 September 2010, doi: 10.1038/nphoton.2010.204
http://www.nature.com/nphoton/journal/vaop/ncurrent/full/nphoton.2010.204.html
Kontakt:
Prof. Dr. Alexander Rohrbach
Lehrstuhl für Bio- und Nanophotonik
IMTEK – Institut für Mikrosystemtechnik
und BIOSS, Centre for Biological Signalling Studies
Universität Freiburg
Tel.: 0761/203-7536
E-Mail: rohrbach@imtek.de
Florian Fahrbach
Tel.:0761/203-7536
E-Mail: fahrbach@imtek.de

Rudolf-Werner Dreier | idw
Weitere Informationen:
http://www.imtek.de/bnp
http://www.nature.com/nphoton/journal/vaop/ncurrent/full/nphoton.2010.204.html

Weitere Berichte zu: Bessel-Strahlen Laserstrahl Nanophotonik Nature Photonics Photon Photonic

Weitere Nachrichten aus der Kategorie Studien Analysen:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Europaweite Studie zu Antibiotikaresistenzen in Krankenhäusern
18.11.2016 | Deutsches Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Studien Analysen >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie