Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Selbst-rekonstruierende Laserstrahlen

12.10.2010
Forscher der Universität Freiburg entwickeln ein neues Konzept in der Mikroskopie

Jeder Autofahrer kennt die Schwierigkeiten, wenn im Herbst auf nebligen Straßen die Sichtweite unter 50 Meter sinkt. Das Licht der Scheinwerfer wird an den Nebeltröpfchen gestreut und beleuchtet auftretende Hindernisse nicht ausreichend, weil es sie nicht mehr erreicht.

Dieses alltägliche Beispiel veranschaulicht ein bedeutendes Problem der Lichtmikroskopie: Bei deren Einsatz in der modernen Zellbiologie streuen dichte Ansammlungen von Tausenden von Zellen das Beleuchtungslicht so stark, dass die Zellen im hinteren Teil des Objekts kaum noch zu sehen sind. Das Konzept selbst-rekonstruierender Laserstrahlen, wie es eher aus der Science-Fiction-Welt bekannt ist, könnte einen verheißungsvollen Lösungsansatz dieser Problematik bieten.

Dr. Alexander Rohrbach, Professor für Bio- und Nanophotonik am Institut für Mikrosystemtechnik der Universität Freiburg, entwickelt mit seiner Arbeitsgruppe neuartige, unkonventionelle Mikroskopieverfahren. Sein Doktorand Florian Fahrbach befasste sich zunächst als Diplomand mit selbst-rekonstruierenden Laserstrahlen. „Wir arbeiten seit vier Jahren an dem Thema“, erklärt er: „Ohne die Unterstützung des Freiburger Exzellenzclusters BIOSS, Centre for Biological Signalling Studies, aber auch der Firma Carl Zeiss MicroImaging GmbH hätten wir das jetzt vorgestellte Konzept nur sehr schwer realisieren können!“ Rohrbach freut sich, denn: „Hier wurde der direkte Transfer von der Grundlagenforschung in die Anwendung mit dem neuen Mikroskop erreicht. Das ist ganz sicher das, was ein Forscher sich wünscht!“

In der November-Ausgabe von Nature Photonics beschreiben die Wissenschaftler das von ihnen gebaute Lichtmikroskop, dessen Strahlen sich beim Durchdringen lichtstreuender Materie selbst wieder bündeln. Ihr Verfahren erlaubt nicht nur neue Einblicke in die Physik der komplexen Lichtstreuung, sondern ermöglicht es beispielsweise, circa 50 Prozent tiefer in menschliche Haut hineinzuschauen als bisher mit konventionellen Laserstrahlen. Ihre Neuentwicklung nennen die Autoren MISERB (microscope with self-reconstructing beams).

In mehreren Experimenten konnten die Freiburger Forscher zeigen, dass sich speziell geformte Laserstrahlen auch dann selbst rekonstruieren können, wenn verschiedene Hindernisse, im Extremfall viele licht-streuende biologische Zellen, das Profil des Laserstrahls immer wieder zerstören. Die Selbstrekonstruktion funktioniert, weil gestreute Photonen (Lichtquanten) im Zentrum des Strahls kontinuierlich durch neue, von der Seite kommende Photonen ersetzt werden. Erstaunlich ist allerdings, dass die Photonen von der Seite trotz massiver Verzögerungen durch die Streuer alle fast phasengleich im Zentrum eintreffen, um dort ein neues Strahlprofil zu bilden. Die Forscher formten hierzu gewöhnliche Laserstrahlen durch ein Computer-gesteuertes Hologramm, ein Gerät, das die Phase des Lichts verändert, zu so genannten Bessel-Strahlen um. Deren Phasenquerschnitt entspricht dem Verlauf eines Kegels. Obwohl Bessel-Strahlen als beugungsfreie Strahlen gelten, war bislang völlig unklar, ob und inwieweit sie auch in inhomogener Materie, also dort, wo viel Streuung stattfindet, ihre ursprüngliche Strahlform von alleine zurückgewinnen können.

Einerseits verheißen die Ergebnisse dieser Studie weitere physikalische Experimente im Bereich der nichtlinearen Optik. Andererseits bestehen berechtigte Hoffnungen, dass für den Exzellenzcluster BIOSS neue biologische Signalkaskaden tief im Inneren von lebenden Organismen besser als bisher sichtbar gemacht werden können.

Christiane Gieseking-Anz

Veröffentlichung
Nature Photonics: „Microscopy with self-reconstructing beams”
Florian O. Fahrbach, Philipp Simon und Alexander Rohrbach.
Published online: 12 September 2010, doi: 10.1038/nphoton.2010.204
http://www.nature.com/nphoton/journal/vaop/ncurrent/full/nphoton.2010.204.html
Kontakt:
Prof. Dr. Alexander Rohrbach
Lehrstuhl für Bio- und Nanophotonik
IMTEK – Institut für Mikrosystemtechnik
und BIOSS, Centre for Biological Signalling Studies
Universität Freiburg
Tel.: 0761/203-7536
E-Mail: rohrbach@imtek.de
Florian Fahrbach
Tel.:0761/203-7536
E-Mail: fahrbach@imtek.de

Rudolf-Werner Dreier | idw
Weitere Informationen:
http://www.imtek.de/bnp
http://www.nature.com/nphoton/journal/vaop/ncurrent/full/nphoton.2010.204.html

Weitere Berichte zu: Bessel-Strahlen Laserstrahl Nanophotonik Nature Photonics Photon Photonic

Weitere Nachrichten aus der Kategorie Studien Analysen:

nachricht Tabakrauchen verkalkt Arterien stärker als reiner Cannabis-Konsum
11.04.2018 | Universität Bern

nachricht »Zweites Leben« für Smartphones und Tablets
16.03.2018 | Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

Alle Nachrichten aus der Kategorie: Studien Analysen >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics