Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Selbst-rekonstruierende Laserstrahlen

12.10.2010
Forscher der Universität Freiburg entwickeln ein neues Konzept in der Mikroskopie

Jeder Autofahrer kennt die Schwierigkeiten, wenn im Herbst auf nebligen Straßen die Sichtweite unter 50 Meter sinkt. Das Licht der Scheinwerfer wird an den Nebeltröpfchen gestreut und beleuchtet auftretende Hindernisse nicht ausreichend, weil es sie nicht mehr erreicht.

Dieses alltägliche Beispiel veranschaulicht ein bedeutendes Problem der Lichtmikroskopie: Bei deren Einsatz in der modernen Zellbiologie streuen dichte Ansammlungen von Tausenden von Zellen das Beleuchtungslicht so stark, dass die Zellen im hinteren Teil des Objekts kaum noch zu sehen sind. Das Konzept selbst-rekonstruierender Laserstrahlen, wie es eher aus der Science-Fiction-Welt bekannt ist, könnte einen verheißungsvollen Lösungsansatz dieser Problematik bieten.

Dr. Alexander Rohrbach, Professor für Bio- und Nanophotonik am Institut für Mikrosystemtechnik der Universität Freiburg, entwickelt mit seiner Arbeitsgruppe neuartige, unkonventionelle Mikroskopieverfahren. Sein Doktorand Florian Fahrbach befasste sich zunächst als Diplomand mit selbst-rekonstruierenden Laserstrahlen. „Wir arbeiten seit vier Jahren an dem Thema“, erklärt er: „Ohne die Unterstützung des Freiburger Exzellenzclusters BIOSS, Centre for Biological Signalling Studies, aber auch der Firma Carl Zeiss MicroImaging GmbH hätten wir das jetzt vorgestellte Konzept nur sehr schwer realisieren können!“ Rohrbach freut sich, denn: „Hier wurde der direkte Transfer von der Grundlagenforschung in die Anwendung mit dem neuen Mikroskop erreicht. Das ist ganz sicher das, was ein Forscher sich wünscht!“

In der November-Ausgabe von Nature Photonics beschreiben die Wissenschaftler das von ihnen gebaute Lichtmikroskop, dessen Strahlen sich beim Durchdringen lichtstreuender Materie selbst wieder bündeln. Ihr Verfahren erlaubt nicht nur neue Einblicke in die Physik der komplexen Lichtstreuung, sondern ermöglicht es beispielsweise, circa 50 Prozent tiefer in menschliche Haut hineinzuschauen als bisher mit konventionellen Laserstrahlen. Ihre Neuentwicklung nennen die Autoren MISERB (microscope with self-reconstructing beams).

In mehreren Experimenten konnten die Freiburger Forscher zeigen, dass sich speziell geformte Laserstrahlen auch dann selbst rekonstruieren können, wenn verschiedene Hindernisse, im Extremfall viele licht-streuende biologische Zellen, das Profil des Laserstrahls immer wieder zerstören. Die Selbstrekonstruktion funktioniert, weil gestreute Photonen (Lichtquanten) im Zentrum des Strahls kontinuierlich durch neue, von der Seite kommende Photonen ersetzt werden. Erstaunlich ist allerdings, dass die Photonen von der Seite trotz massiver Verzögerungen durch die Streuer alle fast phasengleich im Zentrum eintreffen, um dort ein neues Strahlprofil zu bilden. Die Forscher formten hierzu gewöhnliche Laserstrahlen durch ein Computer-gesteuertes Hologramm, ein Gerät, das die Phase des Lichts verändert, zu so genannten Bessel-Strahlen um. Deren Phasenquerschnitt entspricht dem Verlauf eines Kegels. Obwohl Bessel-Strahlen als beugungsfreie Strahlen gelten, war bislang völlig unklar, ob und inwieweit sie auch in inhomogener Materie, also dort, wo viel Streuung stattfindet, ihre ursprüngliche Strahlform von alleine zurückgewinnen können.

Einerseits verheißen die Ergebnisse dieser Studie weitere physikalische Experimente im Bereich der nichtlinearen Optik. Andererseits bestehen berechtigte Hoffnungen, dass für den Exzellenzcluster BIOSS neue biologische Signalkaskaden tief im Inneren von lebenden Organismen besser als bisher sichtbar gemacht werden können.

Christiane Gieseking-Anz

Veröffentlichung
Nature Photonics: „Microscopy with self-reconstructing beams”
Florian O. Fahrbach, Philipp Simon und Alexander Rohrbach.
Published online: 12 September 2010, doi: 10.1038/nphoton.2010.204
http://www.nature.com/nphoton/journal/vaop/ncurrent/full/nphoton.2010.204.html
Kontakt:
Prof. Dr. Alexander Rohrbach
Lehrstuhl für Bio- und Nanophotonik
IMTEK – Institut für Mikrosystemtechnik
und BIOSS, Centre for Biological Signalling Studies
Universität Freiburg
Tel.: 0761/203-7536
E-Mail: rohrbach@imtek.de
Florian Fahrbach
Tel.:0761/203-7536
E-Mail: fahrbach@imtek.de

Rudolf-Werner Dreier | idw
Weitere Informationen:
http://www.imtek.de/bnp
http://www.nature.com/nphoton/journal/vaop/ncurrent/full/nphoton.2010.204.html

Weitere Berichte zu: Bessel-Strahlen Laserstrahl Nanophotonik Nature Photonics Photon Photonic

Weitere Nachrichten aus der Kategorie Studien Analysen:

nachricht Zirkuläre Wirtschaft: Neues Wirtschaftsmodell für die chemische Industrie?
28.07.2017 | Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

nachricht Unternehmen entwickeln sich zu Serviceanbietern
25.07.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

Alle Nachrichten aus der Kategorie: Studien Analysen >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie