Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Pianisten: Gehirn verarbeitet Sprache nicht besser

28.11.2011
Musizieren hilft jedoch bei Auswertung mehrfacher Sinnesreize

Wie Menschen mit den Sinnen Signale des Gehirns zeitlich verknüpfen, hängt von ihrer sensomotorischen Erfahrung ab. Das haben zwei Forscherinnen des Max-Planck-Instituts für biologische Kybernetik in Tübingen bei einer Vergleichsstudie mit Musikern und Nichtmusikern zur gleichzeitigen Reizverarbeitung aus mehreren Sinnen im Gehirn festgestellt.

Bei Klavierspielern weiß man, dass sie über die Jahre ein präzises Gespür dafür entwickeln, wie die Tastenbewegungen und Töne zeitlich zusammenhängen. Ob aber Lippenbewegungen und Sprache synchron zueinander sind, können sie nicht besser beurteilen als Nichtmusiker.

Geschultes Gehör merkt Fehler

"Wir fanden heraus, dass Pianisten deutlich genauer als Nichtmusiker merken, ob die Fingerbewegungen am Klavier und die gehörten Töne in der zeitlichen Abfolge übereinstimmten oder nicht", sagt Forscherin HweeLing Lee gegenüber pressetext. Danach ruft bei Pianisten die Wahrnehmung asynchroner Musik und Handbewegungen verstärkte Fehlersignale in einem Schaltkreis zwischen Kleinhirn, prämotorischen und assoziativen Hirnarealen hervor. Allerdings zeigen sich diese Unterschiede bei den Experimenten mit gesprochenen Sätzen und Lippenbewegungen nicht.

Obwohl Asynchronizität bei Sprache und Musik im Gehirn die gleichen Bereiche aktiviert. "Die Reizverarbeitung im Gehirn der Klavierspieler deutet auf einen kontextspezifischen Mechanismus hin: Durch das Üben am Klavier wird im Schaltkreis von Kleinhirn und prämotorischer Großhirnrinde ein Vorwärtsmodell programmiert, das der Person sehr viel präzisere Vorhersagen über den korrekten zeitlichen Ablauf der Seh- und Hörsignale ermöglicht", erklärt MPI-Forscherin Uta Noppeney.

18 Pianisten gegen 19 Nichtmusiker

Ein asynchroner Reiz meldet also einen Fehler bei der Vorhersage. Die Forscherinnen sehen dies als wichtigen Hinweis, wie das Gehirn allgemein plastisch auf sensomotorische Erfahrungen reagieren kann. Ob Pianisten bei der Beurteilung von Geigenmusik ähnlich gut abschneiden würden, wissen die Forscherinnen noch nicht. "Der nächste Untersuchungsschritt bei der Verarbeitung mehrfacher Sinnesreize im Gehirn muss sein, dass wir die Studienteilnehmer selbst gezielt trainieren, um die Effekte genauer zu untersuchen", sagt Noppeney.

In der Studie haben die MPI-Wissenschaftlerinnen verglichen, wie gut 18 Amateurpianisten gegenüber 19 Nichtmusikern die zeitliche Übereinstimmung einerseits von Fingerbewegungen auf der Tastatur und einer Melodie beziehungsweise andererseits von Lippenbewegungen und gesprochenen Sätzen wahrnehmen können. "Für diese Studie haben wir uns zunutze gemacht, dass die Pianisten seit vielen Jahren speziell diese Tätigkeit trainieren, bei der mehrere Sinnesreize, nämlich Seh- und Hörinformationen, Bewegung und die Berührung der Klaviertasten verbunden werden müssen", erklärt Noppeney.

Oranus Mahmoodi | pressetext.redaktion
Weitere Informationen:
http://www.kyb.mpg.de

Weitere Nachrichten aus der Kategorie Studien Analysen:

nachricht Diabetesmedikament könnte die Heilung von Knochenbrüchen verbessern
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

nachricht Soziale Phobie: Hinweise auf genetische Ursache
10.03.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Studien Analysen >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Von Agenten, Algorithmen und unbeliebten Wochentagen

28.03.2017 | Unternehmensmeldung

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit