Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Studie zum Straßenverkehr: Wenn Regellosigkeit sich als hocheffizient erweist

11.06.2013
Ist die Verkehrsdichte auf den Straßen sehr hoch, erweist sich ein ungeregeltes System, in dem die Verkehrsteilnehmer sich nicht an vorgegebene Fahrstreifen halten, als außerordentlich effizient.

Dies ist eines der überraschenden Ergebnisse einer neuen Studie, die Prof. Dr. Heike Emmerich (Universität Bayreuth) und Prof. Dr. Hamid Assadi (Tarbiat Modares Universität Teheran) im European Physical Journal veröffentlicht haben.

Mit einem für diese Studie entwickelten Verfahren können sie mit Bezug auf unterschiedliche Grade der Verkehrsdichte ermitteln, wie sich eine hohe oder eine geringe Fahrstreifen-Disziplin auf das Gesamtsystem auswirkt.

Wer in Europa mit dem Auto unterwegs ist, erlebt einen hochgradig geregelten Straßenverkehr. Der Verkehr bewegt sich meistens auf deutlich markierten Fahrstreifen; Streifenwechsel dienen dazu, das Fahrziel in möglichst kurzer Zeit auf einem möglichst kurzen Weg zu erreichen. In anderen Regionen der Welt hingegen, beispielsweise in manchen asiatischen Metropolen, ist die Ordnung im Straßenverkehr viel schwächer ausgeprägt. Hier gehört es vielerorts zum alltäglichen Fahrstil, auf vorgegebene Fahrstreifen keine Rücksicht zu nehmen, so dass der Straßenverkehr nie oder nur zeitweise in geordneten Bahnen verläuft.

Auf den ersten Blick sieht ein derartiges Verkehrssystem chaotisch und ineffizient aus. Prof. Dr.-Ing. Heike Emmerich, die an der Universität Bayreuth den Lehrstuhl für Material- und Prozesssimulation leitet, und ihr Kollege Prof. Dr. Hamid Assadi, der an der Tarbiat Modares Universität in Teheran lehrt und zurzeit am Max-Planck-Institut für Eisenforschung in Düsseldorf tätig ist, wollten es jedoch genauer wissen. Gemeinsam haben sie ein komplexes Modell entwickelt, das es ermöglicht, die Auswirkungen einer mehr oder weniger ausgeprägten Fahrstreifen-Disziplin auf den Straßenverkehr zu berechnen.

Straßenverkehr ohne Fahrstreifen-Disziplin:
unter Umständen intelligent und hocheffizient

Die Ergebnisse sind überraschend: Falls sehr viele Fahrzeuge unterwegs sind, erweist sich ein ungeregeltes System, in dem die Verkehrsteilnehmer sich nicht an vorgegebene Fahrstreifen halten, sondern offensiv in jeweils freie Lücken vorstoßen, als außerordentlich effizient. Denn ein solches Fahrverhalten führt in der Summe dazu, dass pro Zeiteinheit eine große Zahl von Fahrzeugen die Straßen passieren kann. Die wechselseitige Toleranz für ungeregeltes Fahrverhalten fördert, eine sehr hohe Verkehrsdichte vorausgesetzt, den zügigen "Durchsatz" der Fahrzeuge. Sie ist insofern eine intelligente Form, ein hohes Verkehrsaufkommen zu bewältigen.

In einigen Berechnungen hat sich herausgestellt, dass ein völlig ungeregeltes System möglicherweise sogar effizienter ist, als wenn alle Verkehrsteilnehmer den vorgegebenen Fahrstreifen folgen. Diese Berechnungen beziehen sich wiederum auf eine sehr hohe Verkehrsdichte und beruhen auf der Annahme, dass die einzuhaltenden Sicherheitsabstände nicht für alle Fahrzeuge und in allen Situationen gleich sind, sondern sich im fließenden Verkehr ständig ändern. Unter diesen Umständen sorgt ein System, das sich für den Betrachter als komplettes Chaos darstellt, in Wirklichkeit dafür, dass die Verkehrsteilnehmer schnellstmöglich vorankommen.

Halbe Ordnung schadet nur:
Probleme bei der Einführung eines geregelten Systems

Am wenigsten effizient sind dagegen diejenigen Verkehrssysteme, die eine Mischung aus Ordnung und Unordnung darstellen. Wenn sich die eine Hälfte der Verkehrsteilnehmer diszipliniert auf Fahrstreifen vorwärts bewegt, während die andere Hälfte derartige Vorgaben ignoriert, kommt der Verkehr nur noch schleppend voran. Eine "halbe" Ordnung ist daher für alle Beteiligten schlechter als völlige Regellosigkeit.
Dies hat, wie die Autoren hervorheben, erheblichen Einfluss auf Maßnahmen, die darauf abzielen, ein regelloses Verkehrsverhalten in ein hochgradig geregeltes Verkehrssystem zu überführen. Wenn sich nicht alle Verkehrsteilnehmer schlagartig dem neuen System unterordnen, sondern schrittweise dafür gewonnen werden müssen, bewirken derartige Maßnahmen zunächst einmal eine geringere Effizienz. Dies wiederum kann, insbesondere bei hoher Verkehrsdichte, schnell dazu führen, dass die Einführung des neuen Systems scheitert. Denn wenn Verkehrsteilnehmer die Erfahrung machen, dass die auf stärkere Disziplin ausgerichteten Maßnahmen ein zügiges Vorankommen behindern, sinkt ihre Motivation, durch eigenes Verhalten ein hochgradig geregeltes System zu unterstützen.

Nichtlineare Dynamik:
Von Verkehrssystemen zur Materialforschung

Das Modell, das Prof. Emmerich und Prof. Assadi speziell für ihre Studie entwickelt haben, ist ein sogenannter zellulärer Automat. Mit diesem Modell können sie mit Bezug auf unterschiedliche Grade der Verkehrsdichte ermitteln, wie sich eine hohe oder eine geringe Fahrstreifen-Disziplin auf die Effizienz des Gesamtsystems auswirkt. Bei ihren Entwicklungsarbeiten haben sie auf die Erfahrungen und Erkenntnisse zurückgegriffen, die sie in materialwissenschaftlichen Projekten gewonnen haben.
"In beiden Fällen haben wir es mit einer nichtlinearen Dynamik zu tun, die sich nur mit wirklichkeitsnahen, auf die Vielfalt der möglichen Situationen zugeschnittenen Verfahren angemessen beschreiben lässt", erklärt Prof. Emmerich. "Ob es sich bei den 'Einheiten', die zu dieser Dynamik beitragen, um Nanopartikel oder um Kraftfahrzeuge handelt, ist auf der abstrakten Ebene der Modellierung zweitrangig."

In ihrer wissenschaftlichen Laufbahn hat die Bayreuther Wissenschaftlerin eine Brücke von Verkehrssystemen zur Materialforschung geschlagen: Vor mehr als 15 Jahren hat sie im Fach Physik mit einer Arbeit zur "Simulation im Straßenverkehr mit zellulären Automaten" promoviert. Heute liegt der Schwerpunkt ihrer Forschungen auf Simulationsverfahren, die dazu beitragen, die Belastbarkeit von industriell gefertigten Bauteilen zu optimieren – sei es durch neuartige metallische Legierungen, sei es durch schonendere Herstellungsverfahren.
Veröffentlichung:

Hamid Assadi and Heike Emmerich,
Intelligent driving in traffic systems with partial lane discipline,
in: European Physical Journal B (2013) 86: 178
DOI: 10.1140/epjb/e2013-30511-0

Ansprechpartner:

Prof. Dr.-Ing. Heike Emmerich
Fakultät für Ingenieurwissenschaften
Lehrstuhl für Material- und Prozesssimulation
Universität Bayreuth
D-95440 Bayreuth
Tel.: +49 (0) 921 55 4657
E-Mail: heike.emmerich@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Studien Analysen:

nachricht Wie gesund werden wir alt?
18.09.2017 | Medizinische Hochschule Hannover

nachricht Entrepreneurship-Studie: Großes Potential für Unternehmensgründungen in Deutschland
15.09.2017 | Alexander von Humboldt Institut für Internet und Gesellschaft

Alle Nachrichten aus der Kategorie: Studien Analysen >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie