Mobile Calciumkanäle justieren synaptische Aktivität im Gehirn

Dr. Martin Heine in seinem Labor LIN/Reinhard Blumenstein

Dr. Martin Heine ist in seiner Forschungsgruppe am Leibniz-Institut für Neurobiologie (LIN) in Magdeburg zusammen mit Kollegen aus Bordeaux der Frage nachgegangen, wie diese Kanäle in der präsynaptischen Membran organisiert sind.

Die im Fachmagazin Neuron erschienene Studie zeigt, dass die meisten Calciumkanäle – anders als aufgrund vorangegangener Studien erwartet – im Bereich der präsynaptischen Membran sehr mobil sind und ihre Positionen ständig ändern.

Die Forscher des LIN schließen daraus, dass das molekulare Zusammenspiel innerhalb der Synapsen sehr dynamisch ist. Experimentelle Befunde und computergestützte Simulationen, die an der Otto-von-Guericke-Universität Magdeburg durchgeführt wurden, legen zudem nahe, dass diese Mobilität wesentlich zu einer konstanten synaptischen Signalübertragung beiträgt.

„Die Calciumkanäle müssen an der Stelle sein, wo sie gebraucht werden. Ihre Anpassungsfähigkeit ist sehr wichtig, damit die Synapsen funktionieren. Schließlich erfolgt die Signalübertragung innerhalb von Millisekunden“, erklärt Studienleiter Martin Heine.

Methodisch haben die Wissenschaftler in dieser Arbeit mit der Lokalisations- und der STED-Mikroskopie gleich zwei moderne Verfahren angewendet, deren Entwicklung im vergangenen Jahr mit dem Chemie-Nobelpreis ausgezeichnet wurde. Durch diese Verfahren können die Kanäle in Strukturen mit deutlich weniger als einem Mikrometer Durchmesser beobachtet werden. Elektrophysiologische und elektronenmikroskopische Untersuchungen komplementieren die Ergebnisse.

„Unsere Vorgehensweise lässt Aussagen über Calciumkanäle in Synapsen zu, die über die auf biochemischen, zellanatomischen und physiologischen Befunden beruhenden Erkenntnisse hinausgehen und diese zum Teil in einem anderen Licht erscheinen lassen“, so Heine.

Die Studie gibt neue Einblicke in das Schaltverhalten neuronaler Synapsen, die die Basisstruktur neuronaler Kommunikation darstellen. Sie bietet zudem Anknüpfungspunkte für Untersuchungen neurologischer Krankheiten wie Migräne, Depression oder Epilepsie.

Zukünftig wollen die Forscher mit Hilfe der Lokalisationsmikroskopie und elektrophysiologischen Methoden näher untersuchen, inwieweit die Dynamik der Calciumkanäle Gegenstand von Regulationsmechanismen ist, die beispielsweise bei Lernprozessen oder auch unter pathologischen Umständen die synaptische Übertragung im Gehirn beeinflussen.

Die Studie ist online verfügbar unter:
www.cell.com/neuron/abstract/S0896-6273%2815%2900274-3 

Mobility of Calcium Channels in the Presynaptic Membrane
Romy Schneider, Eric Hosy, Johannes Kohl, Julia Klueva, Daniel Choquet, Ulrich Thomas, Andreas Voigt, Martin Heine

Das Leibniz-Institut für Neurobiologie (LIN) in Magdeburg ist ein Zentrum für Lern- und Gedächtnisforschung.

http://www.lin-magdeburg.de
http://www.cell.com/neuron/abstract/S0896-6273%2815%2900274-3

Media Contact

Sophie Ehrenberg idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Studien Analysen

Hier bietet Ihnen der innovations report interessante Studien und Analysen u. a. aus den Bereichen Wirtschaft und Finanzen, Medizin und Pharma, Ökologie und Umwelt, Energie, Kommunikation und Medien, Verkehr, Arbeit, Familie und Freizeit.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer