Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Menschliches Sehsystem ist dynamisch

30.09.2008
Gießener Psychologen publizieren ihre Forschungsergebnisse in der Oktober-Ausgabe von "Nature Neuroscience"

In unserer natürlichen Umgebung sind wir ständig in Bewegung - das gilt zumindest für unsere Augen. Die Augenbewegungen sind nötig, um das jeweilige Blickziel besser erkennen zu können. Bisher gab es in erster Linie Befunde, die zeigten, dass während solcher Augenbewegungen die visuelle Wahrnehmung stark eingeschränkt ist.

Gießener Forscher unter der Federführung von Prof. Dr. Karl Gegenfurtner, Abteilung Allgemeine Psychologie, der Justus-Liebig-Universität zeigen in einer aktuellen Studie, dass während der Augenbewegungen für manche Reize die Empfindlichkeit des Sehsystems aber auch zunehmen kann. Die Gießener Experimente belegen eindrücklich, dass das menschliche Sehsystem nicht statisch ist. Alle Voraussetzungen sind erfüllt, so dass der Mensch optimal auf jede spezifische Gegebenheit reagieren kann.

Diese Ergebnisse publizieren Alexander C. Schütz, Doris I. Braun, Dirk Kerzel, Karl R. Gegenfurtner in ihrem Beitrag "Improved visual sensitivity during smooth pursuit eye movements" in der Oktober-Ausgabe der Fachzeitschrift "Nature Neuroscience", einer der Nature-Monatsschriften. Am 21. September hat das renommierte Fachblatt die Forschungsergebnisse bereits vorab in seiner Online-Ausgabe (Advance Online Publication (AOP)) bekannt gemacht.

Unterstützt wurden die Arbeiten von der DFG-Forschergruppe 560 - Wahrnehmung und Handlung (Gießen/Marburg) und dem DFG-Graduiertenkolleg "NeuroAct" (Marburg/Gießen).

Menschen und Primaten bewegen ihre Augen, um interessante Bereiche der Umwelt auf den Bereich des schärfsten Sehens in der Netzhaut, die sogenannte Fovea, abzubilden. Etwa dreimal pro Sekunde treten solche schnellen, ruckartigen Augenbewegungen auf. Wenn sich das Objekt des Interesses aber bewegt - beispielsweise ein fliegender Vogel oder auch ein Fußball - muss es mittels langsamer Augenbewegungen verfolgt werden, um das Netzhautbild in der Fovea zu stabilisieren.

Bisherige Ergebnisse zeigten, dass visuelle Wahrnehmungsleistungen durch diese Augenbewegungen teilweise stark beeinträchtig sind. So sind die Menschen während der schnellen Blicksprünge für den Bruchteil einer Sekunde nahezu blind. Die aktuelle Studie der Gießener Psychologen weist dagegen nach, dass bestimmte Wahrnehmungsleistungen während langsamer Augenfolgebewegungen sogar verbessert werden können. Es zeigte sich, dass die Empfindlichkeit für farbige Reize und für fein strukturierte Muster während glatter Augenfolgebewegungen höher ist als bei ruhendem Auge. Grob strukturierte Reize, die sich in der Helligkeit vom Hintergrund unterscheiden, werden während glatter Augenfolgebewegungen hingegen schlechter wahrgenommen. Diese Unterschiede zwischen der Verarbeitung von Farbe und Helligkeit deuten darauf hin, dass die Unterschiede schon sehr früh in der visuellen Verarbeitung entstehen.

Der "parvozelluläre Pfad" führt von der Netzhaut zum Sehzentrum im Gehirn und vermittelt hauptsächlich Informationen über Farbe und kleine Details. Da die Studie ferner zeigt, dass die Verbesserung der Wahrnehmungsleistung schon sehr rasch eintritt - nämlich kurz bevor die Augen anfangen sich zu bewegen -, nehmen die Gießener Forscher an, dass im Gehirn gleichzeitig mit dem Startsignal für die Bewegung der Augen ein Signal zum Sehzentrum geschickt wird, um die visuelle Empfindlichkeit während der Augenbewegungen neu zu justieren.

Die Experimente belegen eindrücklich, dass das menschliche Sehsystem nicht statisch ist, sondern dass ständig hier und da an "Schrauben" gedreht wird, damit der Mensch optimal auf die jeweiligen Gegebenheiten reagieren kann.

Originalveröffentlichung:
Alexander C. Schütz, Doris I. Braun, Dirk Kerzel, Karl R. Gegenfurtner (2008).
Improved visual sensitivity during smooth pursuit eye movements.
Nature Neuroscience, October 2008, Volume 11 No 10, pp 1211-1216
Kontakt:
Prof. Karl R. Gegenfurtner
Fachbereich 06 - Psychologie und Sportwissenschaften
Abteilung Allgemeine Psychologie
Otto-Behaghel-Straße 10F
35394 Gießen
Telefon: 0641 99-26100, Fax: 0641 99-26119
E-Mail: gegenfurtner@psychol.uni-giessen.de

Charlotte Brückner-Ihl | idw
Weitere Informationen:
http://www.nature.com/neuro/
http://www.nature.com/neuro/journal/v11/n10/index.html
http://www.uni-giessen.de/

Weitere Nachrichten aus der Kategorie Studien Analysen:

nachricht Wie gesund werden wir alt?
18.09.2017 | Medizinische Hochschule Hannover

nachricht Entrepreneurship-Studie: Großes Potential für Unternehmensgründungen in Deutschland
15.09.2017 | Alexander von Humboldt Institut für Internet und Gesellschaft

Alle Nachrichten aus der Kategorie: Studien Analysen >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Legionellen? Nein danke!

25.09.2017 | Veranstaltungsnachrichten

Hochvolt-Lösungen für die nächste Fahrzeuggeneration!

25.09.2017 | Seminare Workshops

Seminar zum 3D-Drucken am Direct Manufacturing Center am

25.09.2017 | Seminare Workshops