Masernviren sollen zukünftig helfen, Tumoren zu zerstören. Wissenschaftlern des Nationalen Centrums für Tumorerkrankungen (NCT) in Heidelberg ist es gelungen, die Viren so zu programmieren, dass sie ausschließlich Krebszellen befallen. Haben sie sich einmal in der Zelle eingenistet, führt das zu deren Zerstörung.
Zusätzlich werden Botenstoffe freigesetzt, die das Immunsystem anregen, weitere Krebszellen anzugreifen. Im Labor hat sich diese Methode bereits als erfolgreich erwiesen. Nun wollen die Forscher ihre Erkenntnisse in einer klinischen Studie zur Anwendung bringen. Die Deutsche Krebshilfe fördert das Vorhaben mit 464.000 Euro.
Das Forscherteam um PD Dr. Guy Ungerechts, Leiter der Arbeitsgruppe „Virotherapie“ der Abteilung Translationale Onkologie am NCT, entwickelte aus einem abgeschwächten Masern-Impfvirus in langjähriger Laborarbeit eine maßgeschneiderte Waffe gegen Krebszellen. „Um den gewünschten Effekt zu erzielen, mussten wir das Virus in mehreren Schritten genetisch radikal verändern“, so Ungerechts. „Zu gewährleisten, dass die Viren ausschließlich den Tumor ansteuern und dass das Immunsystem effektiv gegen den Tumor gelenkt wird, waren die wesentlichen Arbeitsschritte unseres Projektes.“
Dazu haben die Wissenschaftler die Eiweißhülle des Virus so umgebaut, das es Krebszellen direkt ansteuert und sich in ihnen einnistet. „Krebszellen besitzen spezielle Rezeptoren auf ihrer Oberfläche“, erläutert Ungerechts. „Wir verändern das Virus derart, dass es gezielt an diese Rezeptoren andockt und nicht etwa gesunde Zellen angreift.“
Sobald die Masernviren in die Krebszellen eingedrungen sind, beginnen sie mit Ihrem zerstörerischen Werk. Zusätzlich zwingen die veränderten Viren die besetzten Zellen, einen bestimmten Botenstoff freizusetzen. Dadurch werden Zellen des Immunsystems angelockt, die den Tumor vor der Behandlung noch nicht als „feindlich“ erkannt hatten. Die Abwehrzellen ergänzen das anti-tumorale Wirken der Viren und greifen insbesondere diejenigen Krebszellen an, die von den Viren nicht erreicht werden.
Im Labor konnten Ungerechts und sein Team die neue Behandlungsstrategie erfolgreich etablieren. Nun geht es darum, diese in den klinischen Alltag zuüberführen. „Wir werden zunächst Patienten mit weit fortgeschrittenen Tumorleiden behandeln, um die Verträglichkeit dieser neuen Behandlungsmethode zu untersuchen und um erste Hinweise auf die Wirksamkeit zu bekommen“, erläutert Ungerechts. „Wenn wir diese Phase erfolgreich abschließen, haben wir einen großen Schritt in Richtung Praxisanwendung getan.“
Zudem wollen die Wissenschaftler ihr Therapiekonzept noch weiterentwickeln. Sie bauen zukünftig beispielweise sogenannte Selbstmordgene in das Masernvirus-Erbgut ein. Infizierte Krebszellen werden dann gezwungen, eine eigentlich harmlose Substanz, die dem Patienten verabreicht wird, in ein tödliches Zellgift umzuwandeln, das den Tumor von innen heraus zerstört. Da die meisten Patienten in ihrer Jugend an Masern erkrankt waren oder dagegen geimpft wurden, ist ihr Abwehrsystem vorgewarnt. Damit es die Viren während einer Therapie nicht vorzeitig abfängt, können die Forscher die Virushülle so maskieren, damit nicht das Therapeutikum, jedoch die infizierten Tumorzellen als fremd erkannt werden.
Gerd Nettekoven, Hauptgeschäftsführer der Deutschen Krebshilfe, betont: „Innovative Forschungsprojekte und Strategien zu fördern ist ein großes Anliegen der Deutschen Krebshilfe, um die Krebstherapie stetig zu verbessern. Wir hoffen, dass die Erkenntnisse dieses Projekts schon bald krebskranken Menschen zugutekommen.“
Hintergrundinformation: Krebsforschung
Die Fortschritte in der Krebsforschung haben dazu beigetragen, neue und immer wirkungsvollere Therapien gegen Krebs zu entwickeln und bestehende Behandlungsansätze weiter zu optimieren. Diese Erfolge sind auch der Deutschen Krebshilfe zu verdanken – die gemeinnützige Organisation ist der bedeutendste private Förderer der Krebsforschung in Deutschland. Allein im Jahr 2012 investierte die Deutsche Krebshilfe rund 40 Millionen Euro in die onkologische Forschung. Bei der Forschungsförderung gilt es, im Sinne einer optimalen Patientenversorgung vielversprechende Ergebnisse aus der Forschung schnell und effizient in die klinische Prüfung und Anwendung zu bringen, um die Überlebenschancen und die Lebensqualität krebskranker Menschen stetig zu verbessern.
| Deutsche Krebshilfe e. V.
Weitere Informationen:
http://www.krebshilfe.de
Weitere Berichte zu: > Botenstoff > Deutsche Krebshilfe > Immunsystem > Krebsforschung > Krebshilfe > Krebszelle > Masernvire > NCT > Therapiekonzept > Translationale Onkologie > Virus
Tabakrauchen verkalkt Arterien stärker als reiner Cannabis-Konsum
11.04.2018 | Universität Bern
»Zweites Leben« für Smartphones und Tablets
16.03.2018 | Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT
Schweißen ist noch immer die Standardtechnik, um Metalle miteinander zu verbinden. Doch das aufwändige Verfahren unter hohen Temperaturen ist nicht überall...
Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können
Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...
Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.
Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...
University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.
Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.
Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.
Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...
Anzeige
Anzeige
Internationale Konferenz zur Digitalisierung
19.04.2018 | Veranstaltungen
124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus
19.04.2018 | Veranstaltungen
DFG unterstützt Kongresse und Tagungen - Juni 2018
17.04.2018 | Veranstaltungen
Metalle verbinden ohne Schweißen
23.04.2018 | HANNOVER MESSE
Revolutionär: Ein Algensaft deckt täglichen Vitamin-B12-Bedarf
23.04.2018 | Medizin Gesundheit
Wie zerfallen kleinste Bleiteilchen?
23.04.2018 | Physik Astronomie